- 博客(868)
- 收藏
- 关注
原创 扩展用例-从扩展中创建新用例
从理论和实际花费的观点来看,将扩展移到它自己的用例中或恢复回来,都是很容易的事情。将扩展分离为新的子用例,仅仅需要确定主执行者的目标是什么,给出新用例的层次(可能是子功能级),在新层次中为新用例命名,为新用例创建模板,并填写新用例的细节。(我的用例文档要比大多数人的用例文档短,你的用例文档的长度可能会长一些。在理想情况下,这是在海平面层次下创建用例的唯原因。在原来的用例中,仍然必须处理新的子用例可能失败的情况,因此你的文档可能需要指明成功和失败的条件。第14章中的用例32“管理报表用例”,是一个例子。
2025-08-14 19:53:17
173
原创 扩展用例-失败的嵌套
在扩展处理场景的片段中,你可能面对一个新的分支条件,而且可能是一个失败条件。如果你使用了本书的缩排编写方式,只需要同前面的扩展一样,简单地再次缩排,继续命名条件,继续编写场景。通常,创建新用例的代价是很高的,以至于人们尽可能不将一个扩展分离出来作为一个用例。对于上面的例子,一致的意见应该是在分离出一个用例之前,尽量使用缩排方式。6a.职员在没有完成最小的必要信息之前决定退出:6a1.系统警告职员在没有输入日期、姓名或保险单号,或理赔人姓名的情况下,不能退出。系统丢弃所有保存的临时信息,退出。
2025-08-14 19:51:41
135
原创 时间序列重采样Principle of Resampling for Time Series
xk=xixk=xi+1Example。
2025-08-13 15:43:50
1032
原创 准则 :用“检测到什么”的方式来编写需求条件
可能是客户离开了,或者心脏病发作,或者正忙于安抚一个哭叫的小孩。如果你使用编号的步骤,那么在条件被检测出的地方也要写出步骤的编号,并在编号后面加上一个字母(例如4a)。错误是发生在用户输入数据时,还是之后,或是发生在系统验证数据的时候呢?一个人可能认为错误发生在上述两个步骤中,但这样的争论是不值得的。我喜欢在条件后面加一个冒号(:),使读者不会误认为它是一个执行步骤这个小小的约定减少了很多错误。如果条件发生在多个步骤中,而且你认为指明条件在哪个步骤中发生是很重要的,那么可以简单地将步骤列出。
2025-08-12 19:52:04
458
原创 集中讨论所有可能的失败和可选择的过程
这样做的时候,你会很惊奇地发现,你所考虑的可能出现错误的情况有很多。在练习8.1中,你有一个机会,可以尽可能地找出失败的情况。在我的课程中,有两个学生,John Colaizzi和 Allen Maxwell,重复了3次才完全找出了我在该题答案中写出的失败情况。集中讨论所有可能的情况,这些情况中的场景可能失败,或通过其他方式获得成功。“系统确认”这个短语的每一次出现,都暗示了将会有一个处理系统失败的扩展(无效的账号)。必须处理不期望和异常的内部错误,并产生一个外部可见的结果(发现崩溃的事务日志)。
2025-08-12 19:50:09
472
原创 用例扩展的书写1
可以用这样的方式来阅读上面的例子,“除了用户要求系统保存迄今为止的工作外,系统可能会有自动检测中间保存的要求。由于使用了扩展(extension)这个词,而不是失败(failure)或异常(exception)因此我们能够包括成功和失败两种条件。4.系统检测到拼写错误,加亮单词,向用户显示可选单词,供用户选择5.用户选择一个单词来代替错误的单词。系统根据用户选择的单词来代替加亮的单词。5b.用户输入一个不在列表中的新单词:5b1.系统重新验证新单词的拼写,返回步骤3.4.用户要求系统保存迄今为止的工作,
2025-08-11 11:43:46
272
原创 用例扩展的书写
读者往往在两个条件分支后,就失去了用例行为的线索,而大多数的用例包含了很多分支点。扩展实质上是一个从主用例中被拆分的用例,它开始于一个与它相关的条件。如果项目组的程序员在编程时遇到这些问题,我们才去寻找新的业务规则,并去研究它,这是很浪费时间的。然而,根据第2章的描述,该方法的维护是一个噩梦。在主成功场景下,对于因为特别条件而出现行为分支的每个地方,写出分支的条件及处理分支的步骤。第3种方法是将主成功场景从触发到完成,按照时间顺序写出来,然后在每个分支点写出场景的扩展。这种方法可能是3种方法中最好的一种。
2025-08-11 11:41:57
193
原创 AI的出现,是否能替代IT从业者?
在人工智能技术迅猛发展的浪潮中,AI 在 IT 领域的应用日益广泛,从代码生成、漏洞检测到系统运维等多个环节都能看到 AI 的身影。这让不少人产生疑问:AI 的出现是否会替代 IT 从业者?要回答这个问题,需要全面分析 AI 在 IT 领域的能力边界以及 IT 从业者不可替代的核心价值。
2025-08-10 17:39:25
709
原创 如何使用 DeepSeek 助力工作
用户可上传内部文档(Word/PDF/Excel),构建专属知识图谱。在处理客户咨询时,AI 会优先调用内部知识库信息,确保回答的准确性和一致性。例如企业客服人员在解答客户问题时,DeepSeek 借助企业自定义知识库,能快速给出符合企业产品或服务特点的标准回复,提升客户满意度。对于企业内部员工查询公司制度、业务流程等问题,也能依据自定义知识库迅速提供准确答案,减少信息查找时间,提高工作协同效率。
2025-08-10 17:37:09
842
原创 公共大模型LLM-高手的神器,但却是新手的坑
写出来的初稿,你只要仔细去读,它一定是有问题的。所以如果水平没到,看不出它有问题,如果不去修改,直接用。肯定是给领导用,给导师用,他们轻易的就能看出问题,所以你生成的东西骗不了任何人,也变得没有意义,反而会误导这些新手们。等大家明白了,一晃就三四十岁了,一切都晚了。它的代码规范符合吗?对于新手来说,没有判断能力,生成的代码会误导这些新手。而且生成的代码,使用他们的门槛非常低。还是回归传统教育吧,书还是要亲自读,论文还是要亲自去训练自己,只有现在这样才是捷径。那些公共大模型是助力高手的神器,但却是新手的坑。
2025-08-09 18:21:14
549
原创 AI技术如何助力化工产业提升效率、安全性和可持续性
机器学习算法分析历史生产数据,实时调整反应参数(如温度、压力),提高产率并降低能耗。数字孪生技术模拟工厂运行,在虚拟环境中测试工艺改进方案,减少实际试错成本。能源管理平台通过AI动态调整用电负荷,整合可再生能源。数据质量与跨系统整合是AI落地的核心瓶颈。人机协作框架需明确,确保操作人员理解AI决策逻辑。碳排放追踪模型量化各环节碳足迹,优化低碳生产路径。从局部自动化(如实验室样品分析)逐步扩展至全厂智能决策,避免一次性全局改造的高风险。:部分企业利用AI模型优化催化剂配方,将研发周期从数月缩短至数周。
2025-08-09 17:08:05
253
原创 关于AI在化工产业上的应用方面的毕业论文大纲
研究意义:AI技术如何助力化工产业提升效率、安全性和可持续性。选取1-2个典型企业(如巴斯夫、陶氏化学)的AI应用实例。研究目标:探讨AI在化工领域的应用现状及未来发展方向。AI技术概述:机器学习、深度学习、强化学习等基础概念。背景介绍:化工产业在全球经济中的地位及其面临的挑战。国内外研究现状:AI在化工领域的应用案例及研究进展。化工产业的特点:高能耗、高风险、复杂流程等。总结AI在化工产业中的核心价值与应用潜力。未来趋势:AI与物联网、数字孪生的结合。技术瓶颈:数据质量、模型可解释性等。
2025-08-09 17:06:47
312
原创 Wilcoxon 测试
pythonmodels = ["ARIMA","MGE-SP","DeepAR","LSTM","GRU","N-BEATS"Report:Where:
2025-08-08 17:11:11
803
原创 Wilcoxon符号秩检验
结果显示存在统计显著性差异:$W = 34, p = .003$(双尾),效应量 $r = -.52$。若$W < W_{\text{critical}}$(查表)或 $p < \alpha$ (通常0.05),则拒绝$H_0$$H_1$:两种算法性能差异的中位数 ≠ 0 (存在实质性差异)$H_0$:两种算法性能差异的中位数 = 0 (无实质性差异)分别计算正/负差异的秩和:$W^+$, $W^-$按$|d_i|$升序排列,赋予秩次$R_i$$|r| \geq 0.5$:强效应。
2025-08-08 15:42:45
480
原创 F1分数是精确率(precision)和召回率(recall)的调和平均值
F1分数 是精确率(precision)和召回率(recall)的调和平均值,用于平衡两者之间的矛盾,适用于需要兼顾查准率和查全率的场景。。
2025-08-07 13:46:45
241
原创 比较一下XGBoost与LSTM、GRU、Transformer数据格式方面的核心区别
能直接处理数值特征。对于类别特征,通常需要编码(如Label Encoding, One-Hot Encoding, Target Encoding),但模型本身对编码方式相对鲁棒(尤其Target Encoding)。预测是基于当前样本的所有特征(包括构造的滞后/窗口特征)。对于多步预测,通常需要递归地使用模型预测下一步(使用预测值作为新的滞后特征输入),或者训练多个模型(每个模型预测未来不同步长)。决策树基于阈值分割,数值特征的尺度(归一化/标准化)通常不影响分割点的选择(影响速度但不影响结果)。
2025-08-07 10:54:44
1353
原创 大模型 + 垂直场景:搜索 / 推荐 / 营销 / 客服领域开发
个性化搜索增强语义搜索与上下文理解实时搜索与动态索引动态兴趣建模跨域推荐与冷启动可解释推荐智能内容生成用户画像与精准触达自动化营销策略智能问答与自助服务情感分析与服务优化多模态客服交互
2025-08-06 19:49:37
526
原创 从基础功能到自主决策, Agent 开发进阶路怎么走
核心模块构建工具与框架自然语言处理(NLP)多模态交互规则引擎到机器学习知识图谱与推理在线学习与进化不确定性处理多Agent协作边缘计算与部署可解释性数据隐私通用人工智能(AGI)适配人机共生设计
2025-08-06 19:48:09
367
原创 Hierarchical Clustering层次聚类
Hierarchical ClusteringHierarchical Clustering is a clustering algorithm that iteratively partitions the instances into clusters either using a bottom-up (Agglomerative) or top-down (Divisive) approach. Agglomerative Hierarchical Clustering (AHC) initiall
2025-08-05 16:21:53
297
原创 Definitions, 软件测试规范的一些定义
3. Definitions, acronyms, and abbreviations 3.1 Definitions For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary of IEEE Standards Terms [B2] and IEEE Std 610.12TM-1990 [B3] should be referenced for t
2025-08-04 17:56:10
957
原创 Master Test Plan (MTP) 软件测试计划规范 IEEE-829-2008
The purpose of the Master Test Plan (MTP) is to provide an overall test planning and test management document for multiple levels of test (either within one project or across multiple projects). In view of the software requirements and the project's (umbre
2025-08-04 17:53:46
268
原创 软件的非功能性需求
Despite the challenging nature of NFRs, reports consistently indicate that neglecting them can lead to catastrophic project failures, or at the very least, to considerable delays and consequently to significant increases in the final cost. The following li
2025-08-03 10:40:49
231
原创 需求和测试的映射关系
Relationship between requirements specification levels and testing
2025-08-03 10:39:17
112
原创 IEEE Standard for Application and Management of the Systems Engineering PrDefinitions and acronyms-
c) Test.
2025-08-02 01:00:00
583
原创 IEEE Standard for Application and Management of the Systems Engineering Process
DefinitionsThe definitions listed below establish meaning in the context of this standard. If there is a conflict between the terms in the references and this standard, then the definitions provided here should take precedence as they apply only to the pr
2025-08-02 00:30:00
458
原创 架构决策和基本原理
架构基本原理记录了对已做出的架构决策的解释、理由或推理。决策的基本原理可包括决策的依据、已考虑的备选方案和权衡、决策的潜在后果,以及对附加信息来源的引用。决策与系统关注点相关;但是两者之间通常没有简单的映射。一项决策可以通过多种方式影响架构。– 触发权衡分析,在其中修订了一些 AD 要素,包括其他决定和关注点;图 描绘了架构说明和原理有关的概念。– 改变 AD 元素的属性;– 要求存在 AD 元素;– 提出新的关注点。
2025-08-01 02:15:00
258
原创 架构框架和架构说明语言在-[ISO/IEC 19501]中定义的类图的符号系统。
英国国防部架构框架[27],开放组织架构框架(TOGAF)[41],Kruchten 的“4 + 1”视图模型,西门子 4 视图方法,开放分布式处理参考模型(RM-ODP)[ISO/IEC 10746]和广义企业参考架构(GERA)[ISO 15704]。架构框架和架构说明语言(ADL)是架构构建中得到广泛使用的两种机制。架构框架和架构说明语言是在本国际标准中建立的架构说明的概念基础上来指明的。图 描绘了架构框架的内容。【注 1】架构框架通常包含既包括架构说明的规定,也包括附加的其他架构实践。
2025-08-01 02:15:00
243
原创 AI IDE+AI 辅助编程-生成的大纲-一般般
解释 AI IDE(集成 AI 的开发环境)和 AI 辅助编程工具(如 GitHub Copilot、Amazon CodeWhisperer)列举当前主流工具及其功能(代码补全、错误检测、自动重构等)
2025-07-31 13:26:06
452
原创 IDM下载失败排查
服务器与资源限制:部分服务器会限制单 IP 下载次数、速度或同时连接数,尝试更换 IP(重启路由器)、降低 IDM 的 “最大连接数”(在 “选项 - 连接” 中设置,建议设为 4-8)。若网络中断或波动,需重启路由器、重置网络设置,或联系网络服务商排查线路问题。下载链接有效性:验证目标链接是否失效,可复制链接到浏览器直接下载,若同样失败,可能是链接过期、资源被删除或受访问权限限制(如需要登录、付费)。检查代理或 VPN 配置,若使用代理,可能因代理失效或规则错误导致连接失败,可暂时关闭代理测试。
2025-07-29 17:36:35
562
原创 软件需求规格
The software requirements specification goes by many names in various organizations, although organizations do not use these terms in the same way. It is sometimes called a business requirements document (BRD), functional specification, product specificati
2025-07-29 17:33:06
289
原创 AI模型训练中过拟合和欠拟合的区别是什么?
定义:模型未能充分学习到数据中的规律,对训练数据的拟合程度较差,在训练集和测试集上的表现都不好(如准确率低、损失值高)。- 定义:模型过度学习了训练数据中的细节(包括噪声和随机波动),导致对训练数据拟合效果极好,但对未见过的测试数据泛化能力差。- 表现:训练集性能极好(如准确率接近100%),但测试集性能明显下降,两者差距很大。- 表现:训练集和测试集的性能指标(如准确率)都较低,且两者差距不大。- 过拟合:模型“学太死”,只对训练数据表现好,对新数据没用。- 模型结构过于复杂(如参数过多);
2025-07-28 12:55:07
1481
原创 如何训练自己的AI模型?
5. 训练模型:将数据分为训练集、验证集和测试集,一般按70%-80%、10%-15%、10%-15%的比例划分。若模型过拟合,可采用正则化等方法;若数据量不足,可通过数据增强技术扩充数据,如对图像进行旋转、翻转等操作。若训练大模型,还需强大的算力支持,可使用GPU或TPU加速训练。1. 定义问题和目标:明确模型要解决的问题,如图像分类、文本生成等,并确定相应的性能指标和评估方法,如分类任务可选用准确率、精确率等指标。7. 部署和应用模型:将训练好的模型部署到实际应用中,可使用云服务平台进行部署。
2025-07-28 12:53:09
646
原创 工作流建模
经典的形式化模型,由“库所(Place,表示状态)”“变迁(Transition,表示任务)”“令牌(Token,表示资源/数据)”组成,通过令牌流动描述流程的动态行为。国际通用的标准(由OMG制定),包含丰富的图形元素(如活动、网关、事件、流程流),可描述简单线性流程、复杂分支/并行流程、异常处理(如超时、错误)等。针对非结构化、数据驱动的灵活流程(如客户服务案例处理),流程步骤不固定,由案例数据的状态动态决定下一步任务(如“客户投诉案例”中,若投诉等级为“高”,则触发加急处理流程)。
2025-07-27 16:24:27
399
原创 软件需求建模方法有多少种
用例图(Use Case Diagram):从用户视角描述系统的功能(用例)及用户(参与者)与功能的交互(如“用户登录”“管理员审核订单”)。- 序列图(Sequence Diagram):按时间顺序描述对象间的交互(如“用户下单”时,“用户”“订单系统”“支付系统”的消息传递流程)。- 状态转换图(STD):描述系统或对象在不同状态下的转换规则(如“订单”从“待支付”→“已支付”→“已发货”的状态变化)。以“对象”为核心,关注系统的对象、交互和行为,适合面向对象开发(如UML驱动开发)。
2025-07-27 16:21:27
473
原创 工作流的研究方向
跨系统集成:解决异构系统(如ERP、CRM、物联网平台)的接口兼容问题,实现数据与任务的无缝流转(如基于微服务架构或API网关的协同机制);- 分布式一致性:在多组织参与的场景中,保证流程状态同步、数据可信(如结合区块链技术实现跨组织流程的不可篡改与自动对账);- 能效与绿色流程:在流程设计中减少冗余步骤(如合并重复审批),优化计算资源使用(如非峰值时段执行非紧急任务),降低能耗;- 自适应调整:通过预测模型(如预测任务耗时、资源负载)自动优化流程路径(如跳过冗余步骤、重分配任务);
2025-07-26 15:03:08
465
测试用的需求文档Methodology for Qualifying Safety-Related Electrical and
2025-04-06
计算机科学与软件工程中的统一大学库存系统(UUIS)功能需求与用例分析
2025-03-13
电子商务系统软件需求规范(GAMMA-J在线商店V1)详解
2025-03-13
水文管理与用水追踪系统的软件需求规范-基于地理信息系统的技术应用与需求分析
2025-03-13
Visual C++ MFC例子,从基础例子到提高,总共11个主题
2024-08-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人