Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
nums: [1,2,3] Result: [1,2] (of course, [1,3] will also be ok)
Example 2:
nums: [1,2,4,8] Result: [1,2,4,8]
===================================================================
题目链接:https://leetcode.com/problems/largest-divisible-subset/
题目大意:求出数组中最长非严格递增子序列,使得序列中任意相邻一对数值满足Si % Sj = 0 或者 Sj % Si = 0。
思路:动态规划,dp[i]记录nums[i]作为序列最后一位时的满足条件的最长子序列长度。
参考代码:
class Solution {
public:
vector<int> largestDivisibleSubset(vector<int>& nums) {
int n = nums.size() ;
vector <int> ans ;
if ( n == 0 )
return ans ;
sort ( nums.begin() , nums.end() ) ;//从小到大排序
vector <int> pre ( n , 0 ) ;//记录序列前一个的下标
vector <int> dp ( n , 0 ) ;//记录nums[i]个为序列最后一位时的序列长度
pre[0] = 0 ;
dp[0] = 1 ;
for ( int i = 1 ; i < n ; i ++ )
{
int p = i , sum = 1 ;
for ( int j = 0 ; j < i ; j ++ )//寻找最长序列并记录前一个下标
{
if ( nums[i] % nums[j] == 0 || nums[j] % nums[i] == 0 )
{
if ( dp[j] + 1 > sum )
{
sum = dp[j] + 1 ;
p = j ;
}
}
}
dp[i] = sum ;
pre[i] = p ;
}
int as = 0 , temp = 0 ;
for ( int i = 0 ; i < n ; i ++ )//找出最长序列最后一位下标
{
if ( dp[i] > as )
{
as = dp[i] ;
temp = i ;
}
}
while ( pre[temp] != temp ) //从后往前推,直到pre[temp] == temp说明到达序列第一位
{
ans.push_back ( nums[temp] ) ;
temp = pre[temp] ;
}
ans.push_back ( nums[temp] ) ;
reverse ( ans.begin() , ans.end() ) ;//结果逆序
return ans ;
}
};