es7.3的性能参数调优

1、es集群的索引分片设计不合理,导致分片数很多,监控压力也增大,严重影响到了es集群的稳定性。只能临时关闭监控索引,或者调整监控频率

1)关闭监控
PUT /_cluster/settings?pretty
{
"persistent": {
"xpack.monitoring.collection.enabled": false
}
}

2)监控频率调整 动态参数

调整es的监控频率

PUT /_cluster/settings
{
"persistent" : {
"xpack.monitoring.collection.interval" : "30s"
}
}

调整kibana获取监控数据的频率,需要和es监控频率一致

xpack.monitoring.min_interval_seconds: 30

2、当集群的配置增加的时候,需要对es节点调整静态参数,在启动过程中es分片启动很慢则:

设置在节点中最大允许同时进行分片分布的个数,根据es的cpu等合理设置启动分片的数量

PUT /_cluster/settings
{
"persistent": {
"cluster": {
"routing": {
"allocation.node_concurrent_recoveries": 32
}
}
}
}

3、优化write线程和search线程池

任何参数的调优都必须依据es本身的配置来调整

1)write线程池的调优

thread_pool.write.size:cpu核数+1

thread_pool.write.size: 9 
thread_pool.write.queue_size: 1000

2)search线程池调优

queue_size允许控制没有线程可执行的pending请求队列的初始大小
auto_queue_frame_size设置控制在调整队列之前进行测量的操作数。它应该足够大,以至于单个操作不会不适当地偏向计算
target_response_time是一个时间值设置,指示线程池队列中任务的目标平均响应时间。如果任务通常高于此时间,则将线程池队列调低以使任务被拒绝。
min_queue_size设置控制queue_size可调整的最小数量
max_queue_size设置控制queue_size可调整的最大数量
thread_pool.search.size: 13  (最大cpu核数*3/2+1)
thread_pool.search.queue_size: 500
thread_pool.search.min_queue_size: 8
thread_pool.search.max_queue_size: 800
thread_pool.search.auto_queue_frame_size: 1500
thread_pool.search.target_response_time: 3s

4、设置熔断比例的大小

indices.fielddata.cache.size: 30%

indices.breaker.fielddata.limit: 40%

 

 

 

 

<think>嗯,用户想了解Elasticsearch性能化的最佳实践,包括整参数和索引策略。我需要根据提供的引用资料来整理回答。首先,引用[1]提到化需要多方面的措施,比如索引设计、硬件配置和查询。引用[2]详细讲了索引设计的关键策略,比如分片设置、冷热数据分离和索引模板。引用[4]解释了倒排索引的重要性,分片数设置的建议。还有引用[3]提到缓存策略和监控的重要性。 我应该分几个部分来组织回答。首先是索引设计化,包括分片大小、冷热架构、索引模板和滚动管理。然后是硬件和参数配置,涉及内存、线程池、刷新间隔和合并策略。接下来是查询化,比如避免通配符、使用过滤上下文、分页控制和预索引。最后是维护与监控部分,包括缓存、定期维护和监控工具。 需要注意用户可能对分片设置的具体数值和合并策略的参数不太清楚,要给出具体的建议值。同时,要引用对应的文献,比如分片大小不超过50GB来自引用[2],冷热架构在引用[2]也有提到。线程池整在引用[3]可能涉及,但引用中没有直接说明,可能需要确认。不过根据现有资料,尽量关联正确的引用。 还要生成相关问题,可能需要从不同的化方面提问,比如分片策略、查询、硬件配置等。确保问题覆盖用户可能关心的其他方面。最后检查LaTeX格式是否正确,比如变量用$...$,独立公式用$$...$$,但当前内容中可能没有数学公式,所以暂时不需要处理。回答结构要清晰,分点说明,帮助用户一步步理解化方法。</think>### Elasticsearch性能化最佳实践分步说明 #### 一、索引设计化 1. **分片策略** - 单分片数据量控制在$20GB-50GB$,避免分片过大影响查询性能[^2] - 索引创建时预定义分片数,遵循公式:$$总分片数 = \lceil 数据总量/40GB \rceil$$[^4] - 采用`冷热数据分离架构`,热节点使用SSD存储高频访问数据 2. **索引结构化** - 禁用非必要字段的`_source`和`_all`元数据字段[^4] - 对数值型字段使用`doc_values`替代fielddata ```json PUT my_index/_mapping { "properties": { "price": { "type": "integer", "doc_values": true } } } ``` #### 二、硬件与参数配置 1. **内存管理** - JVM堆内存设置为物理内存的50%,不超过32GB[^3] - 设置`indices.breaker.total.limit`为70%堆内存 2. **线程池** ```yaml thread_pool: write: size: 4 queue_size: 1000 search: size: 8 queue_size: 2000 ``` 根据CPU核心数动态整线程池参数[^1] 3. **写入化参数** - 增大`refresh_interval`至30s-60s - 设置`index.translog.durability`为async异步提交[^2] #### 三、查询性能化 1. **查询语句规范** - 避免使用`wildcard`通配符查询,改用ngram分词[^4] - 对范围查询使用`range`替代`script`脚本[^2] - 使用`filter`上下文替代query上下文,利用bitset缓存[^3] 2. **分页化** - 深度分页使用`search_after`替代`from/size` - 设置`max_result_window`限制返回条数 #### 四、维护与监控 1. **缓存策略** - 开启`query cache`和`request cache` - 定期清除不再使用的索引缓存 2. **段合并化** - 设置`index.merge.policy.max_merged_segment`为5GB - 整`max_thread_count`为CPU核数的50%[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值