(CodeForces - 598C)Nearest vectors

该博客讨论了CodeForces 598C问题,即如何在平面上找到起点在原点的一组向量中,两两之间非定向角度最小的向量对。文章解释了解决方案,涉及向量夹角排序和精确计算夹角的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(CodeForces - 598C)Nearest vectors

time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.

Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.

Input

First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.

The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).

Output

Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.

Examples

Input

4
-1 0
0 -1
1 0
1 1

Output

3 4

Input

6
-1 0
0 -1
1 0
1 1
-4 -5
-4 -6

Output

6 5

题目大意:给出二维平面的一系列向量,这些向量的起点都在原点,问哪两个向量的夹角最小。

思路:根据向量与x轴的夹角排序,之后一一枚举,找出夹角最小的两个向量即可。
**ps:这题的精度很高可以使用long double,精度eps控制在1e-20左右;C语言里long double atan2(long double y,long double x) 返回的是原点至点(x,y)的方位角,即与 x 轴的夹角,也可以理解为复数 x+yi 的辐角,返回值的单位为弧度,取值范围为(-PI,PI].**long double提交的时候要选高版本的G++。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;

const long double pi=acos(-1.0);
const int maxn=100005;

struct node
{
    long double x,y;
    long double t;
    int id;
}a[maxn];

bool cmp(node a,node b)
{
    return a.t<b.t;
}

int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
    {
        scanf("%Lf%Lf",&a[i].x,&a[i].y);
        a[i].id=i+1;
        a[i].t=atan2(a[i].y,a[i].x);
    }
    sort(a,a+n,cmp);
    long double m=2*pi;
    int ans;
    for(int i=0;i<n-1;i++)
        if((a[i+1].t-a[i].t)<m)
        {
            ans=i;
            m=a[i+1].t-a[i].t;          
        }
    if((2*pi-(a[n-1].t-a[0].t))<m) printf("%d %d\n",a[0].id,a[n-1].id);
    else printf("%d %d\n",a[ans].id,a[ans+1].id);
    return 0;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值