(CodeForces - 557C)Arthur and Table

针对一个有多条腿的桌子,为了使其稳定,需要确保最长的腿数量超过总腿数一半,通过移除部分腿来实现。本文介绍了一种算法,通过枚举最终支撑腿的长度并采用类似桶排序的方法来确定最小的移除代价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(CodeForces - 557C)Arthur and Table

time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output

Arthur has bought a beautiful big table into his new flat. When he came home, Arthur noticed that the new table is unstable.

In total the table Arthur bought has n legs, the length of the i-th leg is li.

Arthur decided to make the table stable and remove some legs. For each of them Arthur determined number di — the amount of energy that he spends to remove the i-th leg.

A table with k legs is assumed to be stable if there are more than half legs of the maximum length. For example, to make a table with 5 legs stable, you need to make sure it has at least three (out of these five) legs of the maximum length. Also, a table with one leg is always stable and a table with two legs is stable if and only if they have the same lengths.

Your task is to help Arthur and count the minimum number of energy units Arthur should spend on making the table stable.

Input

The first line of the input contains integer n (1 ≤ n ≤ 105) — the initial number of legs in the table Arthur bought.

The second line of the input contains a sequence of n integers li (1 ≤ li ≤ 105), where li is equal to the length of the i-th leg of the table.

The third line of the input contains a sequence of n integers di (1 ≤ di ≤ 200), where di is the number of energy units that Arthur spends on removing the i-th leg off the table.

Output

Print a single integer — the minimum number of energy units that Arthur needs to spend in order to make the table stable.

Examples

Input

2
1 5
3 2

Output

2

Input

3
2 4 4
1 1 1

Output

0

Input

6
2 2 1 1 3 3
4 3 5 5 2 1

Output

8

题目大意:一个有n条腿的桌子,要使最长的那条腿的数量大于总腿数的一半,拆掉第i条腿需要的代价是d[i],问要使桌子合法所要消耗的最小代价是多少。

思路:我们可以考虑先枚举桌子最后支撑腿的长度x。因为是支撑腿,意味着所有大于x的腿都要被砍掉。对于支撑腿,显然全部保留最好。接下来就是按照代价从小到大砍腿。由于代价最多200,可以借鉴桶排思想,将小于x的腿代价放入桶内。从小到大扫一遍桶砍腿直到满足要求即可即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int INF=0x3f3f3f3f;
const int maxn=100005;
int num[maxn],bigger[maxn];//num记录腿长为l的腿数,bigger记录腿长大于l的代价 
int cost[205];//记录代价为i的有多少条 

struct node
{
    int l,d;
}a[maxn];

bool cmp(node a,node b)
{
    return a.l<b.l;
}

int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        memset(num,0,sizeof(num));
        memset(bigger,0,sizeof(bigger));
        memset(cost,0,sizeof(cost));
        for(int i=0;i<n;i++) 
        {
            scanf("%d",&a[i].l);
            num[a[i].l]++;
        }
        for(int i=0;i<n;i++) scanf("%d",&a[i].d);
        sort(a,a+n,cmp);
        int sum=0;
        for(int i=n-1;i>0;i--)
        {
            sum+=a[i].d;
            if(a[i].l!=a[i-1].l) bigger[a[i-1].l]=sum;
        }
        int ans=bigger[a[0].l];
        cost[a[0].d]++;
        for(int i=1;i<n;i++)
        {
            if(a[i].l!=a[i-1].l)
            {
                int tmp=i-num[a[i].l]+1;//需要减掉的腿的数量
                sum=bigger[a[i].l];
                if(tmp>0)
                {
                    for(int j=1;j<=200;j++) //从小到大减去tmp条腿
                        if(cost[j])
                        {
                            if(cost[j]>=tmp)
                            {
                                sum+=j*tmp;
                                tmp=0;
                                break;
                            }
                            else
                            {
                                sum+=j*cost[j];
                                tmp-=cost[j];
                            }
                        } 
                } 
                ans=min(ans,sum);
            }
            cost[a[i].d]++;
        }
        printf("%d\n",ans);     
    }
    return 0;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值