摘 要
随着我们生活水平的提高,科技产品飞速更新换代,在信息传输中,图像传输所占的比重越来越大。但自然噪声会在图像传输时干扰其传输过程,甚至会使图片不能表达其原来的意义。去噪处理就是为了去除图像中的噪声,从而提升图像质量。因此,研究针对噪声的去噪方法是十分必要的。
文中首先分析了几种图像的去噪算法相关知识。有许多类型的图像去噪法,可以分为以下两种方法:空间滤波和频率场滤波。 本文主要介绍了中值滤波、均值滤波、频域低通滤波去噪算法。 首先,嵌入它们的共同功能及其在图像处理应用中的用途。 其次,阐述了一些去噪算法的原理和特点。 最后,matlab用于对图片模拟和去噪。
Matlab仿真结果表明,不同的去噪算法各有优势。在这些去噪算法中,均值滤波是一种较为普遍的线性滤波,一般适用于高斯噪声的类型。中值滤波是一种比较常见的非线性过滤,特别是对于椒盐噪声,使用中值滤波法效果更佳。因此,在对一幅图片进行去噪操作之前,首先要分析噪声的类型以及其产生的原因,然后再选择合适的去噪算法,这样才能达到比较好的去噪效果。
关键词:图像噪声;图像去噪算法;中值滤波;均值滤波;matlab。
Abstract
With the improvement of our living standards and the rapid upgrading of technology products, image transmission accounts for a larger proportion in information transmission. However, natural noise will interfere with the transmission process during image transmission, and even the picture cannot express its original meaning. Denoising is done to remove noise from the image and improve image quality. Therefore, it is necessary to study the denoising method for noise.
In this paper, the knowledge of several images of denoising algorithms is first analyzed. There are many types of image denoising methods that can be divided into the following two methods: spatial filtering and frequency field filtering. This paper mainly introduces median filtering, mean filtering, and frequency domain low-pass filtering denoising algorithms. First, embed their common features and their use in image processing applications. Secondly, the principles and characteristics of some denoising algorithms are expounded. Finally, matlab is used to simulate and denoise pictures.
Matlab simulation results show that different denoising algorithms have their own advantages. Among these denoising algorithms, mean filter is a more general linear filter, which is generally applicable to the type of Gaussian noise. Median filtering is a common non-linear filtering, especially for salt and pepper noise, the use of median filtering method is better.Therefore, before denoising a picture, first analyze the type of noise and the cause of the noise, and then select the appropriate denoising algorithm, in order to achieve a better denoising effect.
Key words: Pattern Noise ; Image Denoising Algorithm ; Median Filtering ; Mean filtering ; Matlab.
目 录
摘 要 III
Abstract III
第1章 绪论 4
1.1 课题研究背景 4
1.2 国内外研究现状 4
1.3 课题研究重点和思路 5
第2章 Matlab图像处理基础 6
2.1 Matlab概述 6
2.2 Matlab的主要功能 6
2.2.1 数值计算和符号计算功能 6
2.2.2 绘图功能 6
2.2.3 语言体系 7
2.2.4 Matlab工具箱 7
第3章 图像与噪声 9
3.1 什么是图像噪声 9
3.2 图像噪声的分类 9
3.2.1 按噪声产生的原因分类 9
3.2.2 按噪声和信号的关系分类 9
3.2.3 按噪声幅度分布的统计特征分类 10
3.3 图像噪声的特点 11
第4章 空域去噪算法及仿真 12
4.1 均值滤波法 12
4.1.1 均值滤波的基本原理 12
4.1.2 均值滤波的缺点 12
4.2 中值滤波 14
第5章 频域低通滤波 16
5.1 几种常用的低通滤波器 16
5.1.1 理想低通滤波器(ILPF) 16
5.1.2 Butterworth低通滤波器(BLPF) 17
5.1.3 指数低通滤波器(ELPF) 18
5.1.4 梯形低通滤波器(TLPF) 18
5.2 频域低通滤波在Matlab中进行仿真 20
第6章 图像去噪质量评价 24
6.1 主观判断 24
6.2 客观判断 24
6.2.1 均方信噪比(SNR) 24
6.2.1 Matlab中计算 25
第7章 总 结 28
7.1 总 结 28
7.2 展 望 28
参考文献 29
致 谢 31
第1章 绪 论
1.1 课题研究背景
在如今的这个信息时代,图像传输的作用越来越明显。相比于文字载体而言,图像更为直接、明了,且所赋予的内容也更加丰富。可见图像在人类传递信息的整个过程中也发挥了重要的作用。然而在图像的获取和传输过程中,很容易出现图像噪声的情况,图像噪声的存在对人们的视觉感官有着很大的影响,甚至会影响到对图像的获得和理解。因此,对图像进行去噪处理使图像在传输过程中非常重要的一个步骤,图像只有清晰,人眼和计算机才能够采取到其所包含的重要信息。
对图像进行去噪可以分为两类:空间去噪和变换去噪。 就如大家所知道的,在信息传输中,图像载体比较受到欢迎。而图像由各种像素组成,在进行去噪的时候,采用空间去噪法,可以直接处理图像像素。 除了这些之外,常用的方法还包括中值滤波、均值滤波等。变换域去噪法不是直接在图像本身进行去噪,而是图像被变换,然后处理系数以进行处理。 在处理然后对由表格处理的图像进行逆变换之后,公共域变换域去噪基于基于小波变换的傅里叶变换。图像去噪和图像去