
pandas
文章平均质量分 80
wqq_992250277
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于python的热门歌曲采集分析系统
摘要: 基于Python的热门歌曲采集分析系统通过Scrapy爬虫自动抓取音乐平台数据,结合MySQL存储和Vue.js前端展示。核心功能包括实时排行榜、标签筛选、播放管理、用户评分及个性化推荐,并借助数据可视化呈现歌曲趋势。系统优势在于自动化采集、个性化服务和模块化扩展,适用于音乐平台运营、创作推广及学术研究。通过分析用户行为和市场数据,为行业提供决策支持与用户体验优化方案。(149字)原创 2025-06-25 15:09:04 · 387 阅读 · 0 评论 -
python基于大数据技术的购房推荐系统的设计与实现
购房推荐系统利用Python编程语言的强大功能和丰富的大数据技术,结合机器学习算法和推荐算法,对购房数据进行深入挖掘和分析,以提供个性化的购房推荐服务。随着房地产市场的不断发展和用户需求的日益多样化,该系统能够为购房者提供精准、高效的购房建议,帮助他们找到最适合自己的房源。原创 2025-06-25 15:07:50 · 405 阅读 · 0 评论 -
基于Django开发的静思阁自习预约管理系统
静思阁自习预约管理系统是基于Django框架开发的智能化平台,采用B/S架构和Python技术栈,整合MySQL数据库实现高效资源管理。系统包含用户预约、公告展示、智能推荐等前端功能,以及订单管理、数据可视化、座位调整等后台功能,支持多场景应用。通过模块化设计和权限控制,既保障了系统的安全性与可扩展性,又提升了自习室使用效率和用户体验。适用于高校、图书馆等场所的数字化管理需求。原创 2025-06-25 15:06:05 · 294 阅读 · 0 评论 -
django基于Python天气分析系统
本文介绍了一个基于Django和Python的综合性天气分析系统。系统采用Django框架作为后端,结合Python强大的数据处理库和前端技术,实现了从数据采集到分析预测的全流程功能。核心模块包括:通过API/爬虫采集气象数据,使用Pandas/NumPy进行数据处理,应用机器学习算法进行预测分析,并通过可视化工具展示结果。系统特点包括高效性(支持Hadoop分布式处理)、准确性、可扩展性和易用性。该系统适用于气象研究、农业、交通等多个领域,为决策提供数据支持。原创 2025-06-25 15:04:21 · 904 阅读 · 0 评论 -
django基于人脸识别的课堂考勤系统
摘要:Django基于人脸识别的课堂考勤系统采用Python+Django框架,整合OpenCV和dlib人脸识别技术,实现高效自动化考勤。系统包含用户管理、人脸识别签到、请假审批和数据统计分析功能,通过MySQL存储数据。相比传统考勤方式,该系统具有识别准确率高(98%)、操作简便(签到时间<3秒)、支持千人级并发处理等特点,可提升考勤效率60%以上,同时提供完善的权限管理和数据加密保障。目前已在3所高校试点应用,平均每日处理考勤记录5000+条,错误率低于0.5%。原创 2025-06-25 15:02:44 · 703 阅读 · 0 评论 -
python基于大数据的分析长沙旅游景点推荐系统
摘要:基于Python大数据的长沙旅游景点推荐系统采用五层架构设计(数据采集、处理、分析、推荐算法和用户交互层),整合爬虫技术、机器学习算法(协同过滤、内容推荐)和可视化工具。系统通过多源数据采集实现个性化推荐,具备景点搜索、评价、行程规划等功能,具有实时更新、用户友好和可扩展性优势。应用结果表明,该系统能有效提升游客体验和满意度,促进长沙旅游业发展。系统核心模块包括数据处理(Pandas/NumPy)、机器学习(Scikit-learn)和可视化(Matplotlib)等Python技术栈。原创 2025-06-25 14:58:08 · 310 阅读 · 0 评论 -
python基于协同过滤的淮安文化旅游推荐系统
本文介绍了一种基于Python协同过滤算法的淮安文化旅游推荐系统。该系统采用五层架构(数据采集、处理、算法、推荐生成和用户交互),运用Python技术栈实现个性化景点推荐功能。系统通过分析用户历史行为和偏好,结合景点数据,提供热门景点浏览、个性化推荐、评价互动和行程规划等服务。实际应用表明,该系统有效提升了游客体验和满意度。未来可进一步优化算法精度并拓展应用范围,为更多地区游客提供智能化旅游推荐服务。原创 2025-06-25 14:57:04 · 501 阅读 · 0 评论 -
python基于大数据的智能交通分析系统的设计与实现
本文介绍了基于Python和大数据的智能交通分析系统设计与实现。系统采用多层架构(数据采集、处理、分析、可视化和应用层),利用Python生态中的Pandas、NumPy、Scikit-learn等工具处理交通数据,并通过机器学习进行流量预测和事件检测。系统功能包括实时监测、交通预测、事件报警和数据可视化,能有效提升交通管理效率。未来系统将融合深度学习和智慧城市技术,为城市交通提供更智能的解决方案。该系统对缓解拥堵、提高交通安全具有重要意义。原创 2025-06-25 14:55:15 · 781 阅读 · 0 评论