[2401.03568] Agent AI: Surveying the Horizons of Multimodal Interaction
这篇论文《AGENT AI: Surveying the Horizons of Multimodal Interaction》探讨了“Agent AI”作为多模态交互的新兴领域及其在实现人工通用智能(AGI)中的潜力。主要内容包括:
-
定义与背景:
- Agent AI被定义为能够感知多模态输入(视觉、语言、环境数据)并生成有意义动作的互动系统。
- 借助大型语言模型(LLMs)和视觉语言模型(VLMs)的最新发展,这些系统展示出解决复杂任务的潜力。
-
方法与框架:
- 提出了一种新范式,用于集成LLMs和VLMs进行智能体训练,强调任务规划、记忆机制和环境反馈的利用。
- 通过强化学习、模仿学习和交互学习等方法,探索如何增强Agent AI的能力。
-
应用领域:
- 涉及游戏、机器人、医疗保健等场景的多模态AI应用。
- 包括虚拟现实与混合现实环境中的智能体交互,以及机器人任务规划和执行。
-
挑战与展望:
- 讨论了在消除模型幻觉、减少偏见、确保数据隐私和增强解释性方面的挑战。
- 提出了未来发展方向,例如增强Agent AI的跨领域通用性和自动持续改进能力。
-
伦理与社会影响:
- 关注Agent AI的社会影响,包括公平性、包容性和技术部署的伦理问题。
这篇论文旨在为Agent AI的研究提供全面的基础知识和未来发展的方向,同时促进研究社区在该领域的合作和进步。
2. Agent AI Intergration
第二部分“Agent AI Integration”(Agent AI的整合)探讨了Agent AI如何与大型基础模型(LLMs和VLMs)及其他技术结合以实现更强的能力。以下是该部分的详细内容:
2.1 无限AI智能体
-
提出了“无限智能体”(Infinite Agent)的概念:
- 这种智能体能够从通用基础模型(如GPT、DALL-E)中学习,并将其知识迁移到新领域或场景,用于场景理解、生成和交互编辑。
- 特点:
- 预测建模:基于历史数据和趋势预测下一步动作。
- 决策能力:根据目标自动选择最佳行动。
- 处理模糊性:利用上下文推断歧义信息。
- 持续改进:通过用户交互和新数据不断更新能力。
-
应用场景:
- 机器人领域:例如RoboGen,通过自动化任务生成、环境建模和技能学习,将大型模型嵌入机器人中。
2.2 与大型基础模型的结合
- 强调大型基础模型(LLMs和VLMs)在Agent AI中的关键作用:
- 示例应用:
- 使用视觉语言模型(VLM)指导机器人操纵和导航任务。
- 基于语言生成的条件动作(如生成与特定指令相符的人类动作)。
- 能力提升:
- VLM结合视觉输入提升导航和环境理解能力。
- LLM通过上下文增强决策和任务规划能力。
- 示例应用:
2.2.1 幻觉问题(Hallucinations)
- 描述了多模态系统中的“幻觉”问题:
- 分类:
- 内在幻觉:生成内容与输入源矛盾。
- 外在幻觉:生成内容包含输入中不存在的信息。
- 解决方法:
- 检索增强生成:通过外部知识库校正生成结果。
- 提供明确的训练环境反馈以减少错误。
- 分类:
2.2.2 偏见与包容性
- 分析Agent AI中的偏见来源和对策:
- 偏见来源:
- 训练数据反映社会偏见(如文化、性别、种族等)。
- 过度依赖西方数据(WEIRD社会,西方、教育程度高、工业化等)。
- 解决方法:
- 增加多样化和包容性的训练数据。
- 实施偏见检测与修正。
- 制定伦理规范和多元化内容生成政策。
- 偏见来源:
2.2.3 数据隐私与使用
- 讨论了数据隐私问题及其对Agent AI设计的影响:
- 数据采集:透明化数据采集用途并确保用户知情同意。
- 数据存储与保护:采用加密与访问控制等技术保护用户数据。
- 数据删除与保留:确保数据可被用户删除或请求查看。
2.2.4 可解释性与可解释生成
- 提出通过分离任务奖励函数和学习过程(decoupling)实现更好的可解释性:
- 模仿学习的改进:通过专家演示行为提取核心策略,帮助智能体在未见环境中更好地泛化。
- 结合环境反馈:允许Agent基于实际交互不断优化行为。
2.2.5 推理增强(Inference Augmentation)
- 通过外部数据、算法优化和实时反馈等增强智能体推理能力:
- 数据补充:通过引入额外数据提升推理能力。
- 实时反馈:根据动态系统条件调整输出。
- 领域知识迁移:利用一个领域的知识提升其他领域的推理能力。
2.2.6 监管与约束
- 强调在物理环境中应用LLMs/VLMs时需要设置约束:
- 提示工程:通过明确的任务提示控制模型输出稳定性。
- 用户验证层:引入用户引导以审查和修改智能体的动作计划。
3. Agent AI Paradigm
第三部分**“Agent AI Paradigm”(Agent AI范式)**提出了一个新的框架和方法论,用于开发和训练Agent AI,重点在于利用现有的大型语言模型(LLMs)和视觉语言模型(VLMs),支持任务规划、记忆机制、环境反馈等功能。以下是该部分的详细内容:
3.1 LLMs 和 VLMs 的作用
-
基础支持:LLMs和VLMs可以作为智能体框架的核心组件,用于支持多模态任务规划和复杂推理。
- LLMs的优势:
- 语言任务规划:强大的语言任务分解和逻辑推理能力。
- 世界知识:包含广泛的现实世界知识。
- VLMs的优势:
- 图像识别:通过对视觉输入进行语言对齐(如CLIP模型)。
- 多模态结合:例如,LLaVA和InstructBLIP结合视觉和语言模型提供多模态能力。
- LLMs的优势:
-
现有的多模态架构:
- 通过连接预训练的语言和视觉模型来构建多模态AI系统,例如Flamingo、BLIP-2和LLaVA。
3.2 Agent Transformer 定义
-
Agent Transformer 的提出:
- 将视觉和语言输入与专用的**Agent Tokens(智能体令牌)**结合起来,构建一个统一的多模态Transformer模型。
- Agent Tokens:
- 为特定领域的智能体行为预留的输入和输出子空间。
- 可用于机器人控制器输入、API调用等。
- 与现有架构的区别:
- 不仅仅依赖冻结的子模块,而是采用端到端训练的方式,允许智能体适应特定领域任务。
-
优势: