Float精度丢失处理方法

项目开发过程中,有很多涉及到金额、款项类的输入框,前端输入后传递到后端接收,很多时候直接用Float,Double类型接收,数值不是很大时候没问题,精度不会出错,但是一般数值过大就会出现小数点精度丢失,原理应该是跟Float,double类型的底层存储位数有关系,本文介绍java中如何处理此类问题!

处理方法是 后台用 java.math.BigDecimal类型的参数接收,不要使用Float,Double类型,BigDecimal会将前端传递的参数精准的接收,在直接入库就可以啦!
还有就是在后端项目涉及数量计算累加的时候,也必须使用BigDecimal类型,相加时候使用add方法,最后将总的数值(BigDecimal类型)转换成数值就可以了!

### 浮点数运算中的精度问题及其解决方案 #### 使用 `decimal` 模块提高精度 为了处理 Python 中浮点数的精度问题,可以使用内置的 `decimal` 模块来替代默认的浮点数表示法。该模块提供了更高精度的小数值,并允许指定有效位数。 ```python from decimal import Decimal, getcontext getcontext().prec = 6 # 设置全局精度为6位小数 result = Decimal('2.01') + Decimal('3.02') print(result) # 输出: 5.03 ``` 通过这种方式能够有效地避免由于二进制转换带来的舍入误差[^1]。 #### 应用近似比较而非严格等于判断 当涉及浮点数之间的逻辑判定时,不宜直接采用等号 (`==`) 进行绝对意义上的相等测试;相反地,应该考虑设定一个小范围内的容差值来进行相对接近度检验: ```python def is_close(a, b, rel_tol=1e-9): """ 判断两个浮点数是否足够接近 """ return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), 1e-15) # 示例调用 is_equal = is_close(2.01 + 3.02, 5.03) print(is_equal) # True 或 False 取决于实际差异程度 ``` 这种方法可以在大多数情况下提供合理的准确性而不必担心底层硬件实现细节所引起的细微差别[^2]。 #### 预防措施与最佳实践建议 为了避免因浮点数计算而导致意外的结果,在编写程序之初就应当采取一系列预防性的策略: - 尽量减少不必要的浮点数四则混合运算次数; - 对输入数据做预处理,如标准化单位、扩大倍率后再缩小等方式间接提升最终结果的有效数字长度; - 明确知晓目标平台对于IEEE标准的支持情况以及可能存在的局限性; - 当确实需要高精度算术支持的时候优先选用专门设计用于此目的库函数或工具类[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值