3D点云完美匹配

本文介绍了3DSmoothNet,一种使用体素化平滑密度值(SDV)的3D点云匹配方法。通过暹罗深度学习架构和全卷积层,实现旋转不变性。3DSmoothNet在3DMatch基准上取得了高召回率,且在低输出维度下具有高效性能,适用于实时应用。SDV和局部参考坐标系的结合解决了稀疏输入和未对准问题,网络结构学习紧凑且高度描述性的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3D点云完美匹配

The Perfect Match: 3D Point Cloud Matching
with Smoothed Densities

地址链接:

http://openaccess.thecvf.com/content_CVPR_2019/papers/Gojcic_The_Perfect_Match_3D_Point_Cloud_Matching_With_Smoothed_Densities_CVPR_2019_paper.pdf

代码链接:https://github.com/zgojcic/3DSmoothNet

摘要

提出三维平滑网,一个完整的工作流程来匹配三维点云与siamese深度学习架构和全卷积层使用体素化平滑密度值(SDV)表示。后者按兴趣点计算,并与局部参考坐标系(LRF)对齐,以实现旋转不变性。紧凑、学习、旋转不变的三维点云描述符在3DMatch基准数据集[49]上实现了94.9%的平均召回率,在仅32个输出维度的情况下,其性能超过最新水平20%以上。这种非常低的输出维度允许在标准PC上对每个特征点进行0.1毫秒的近实时对应搜索。SDV、LRF和学习具有完全卷积层的高描述性特征,本文用传感器和场景诊断。在建筑物的RGB-D室内场景上训练的3d smoothnet在室外植被的激光扫描上达到79.0%的平均召回率,比最近的、以学习为基础的竞争对手[49、17、5、4]的性能提高了一倍以上。

贡献

提出了一种新的用于三维点云匹配的紧凑学习局部特征描述子,该描述子计算效率高,性能显著优于现有的所有方法。

一个主要技术创新是平滑密度值(SDV)体素化,是一种新的输入数据表示方法,适用于标准深度学习库的完全卷积层。SDV的增益是两倍。一方面,它减少了稀疏性输入体素网格,在反向传播过程中有更好的梯度流动,同时减少边界效应,以及平滑由于局部参考帧(LRF)估计错误而导致的小的未对准。另一方面,模拟了深层网络通常在第一层学习的平滑,节省了学习高度描述性特征的网络容量。

其次,提出了一个具有完全卷积层的暹罗网络结构,学习一个非常紧凑的、旋转不变的3D局部特征描述。这种方法生成

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值