如何运行具有奇点的NGC深度学习容器

本文介绍了如何使用Singularity在HPC系统上轻松部署和运行NGC深度学习容器,包括TensorFlow的ResNet-50模型训练和多节点分布式训练。通过Singularity,科学家和研究人员可以简化AI工作负载的部署过程,实现高性能和可移植性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何运行具有奇点的NGC深度学习容器

How to Run NGC Deep Learning Containers with Singularity

高性能计算机和人工智能的融合使新的科学突破成为可能。现在需要在同一个系统上同时部署HPC和AI工作负载。

支持HPC和AI工作负载所需的软件环境的复杂性是巨大的。应用软件依赖于许多相互依赖的软件包。仅仅获得一个成功的构建是一个挑战,更不用说确保构建得到优化,以利用最新的硬件和软件功能。

容器是一种广泛采用的降低HPC和AI软件部署复杂性的方法。整个软件环境,从深度学习框架本身,到性能所必需的数学和通信库,都打包成一个包。由于容器中的工作负载总是使用相同的环境,因此性能是可复制和可移植的。

NGC是一个GPU优化软件的注册中心,通过提供定期更新和验证的HPC和AI应用程序容器,使科学家和研究人员受益匪浅。NGC最近宣布从19.11版开始,支持在Singularity容器运行时使用deep learning 容器。这大大简化了使用奇点的HPC站点采用人工智能方法的过程。

这文说明了NGC和Singularity是如何极大地简化在HPC系统上部署深度学习工作负载的。

Training ResNet-50 with TensorFlow

ResNet首次用于赢得2015年ImageNet比赛,至今仍是一种流行的图像分类模型,被广泛用作深度学习训练的基准。在几个简单的步骤中,将演示如何使用TensorFlow和ImageNet数据库中的图像训练ResNet-50v1.5模型。尽管目前ResNet模型的训练几乎是微不足道的,但这里所示的相同方法可以用于扩展更大模型的训练,也可以用于其深度学习框架。
在这里插入图片描述
Figure 1: ResNet-50 architecture (source)

除了作为一个容器注册表,NGC还提供完整的人工智能工作流,包括预先训练的模型和脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值