查看linux服务器硬盘IO读写负载

本文详细介绍了如何使用top、iostat等命令检查Linux服务器硬盘IO访问负荷,包括CPU时间百分比、磁盘利用率等指标,并提供了压力测试和高峰进程IO情况查看方法,帮助快速定位和解决服务器性能瓶颈。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近一台linux服务器出现异常,系统反映很慢,相应的应用程序也无法反映,而且还出现死机的情况,经过几天的观察了解,发现服务器压力很大,主要的压力来自硬盘的IO访问已经达到100%

  为了方便各位和自己今后遇到此类问题能尽快解决,我这里将查看linux服务器硬盘IO访问负荷的方法同大家一起分享:

  首先 、用top命令查看

  top - 16:15:05 up 6 days, 6:25, 2 users, load average: 1.45, 1.77, 2.14

  Tasks: 147 total, 1 running, 146 sleeping, 0 stopped, 0 zombie

  Cpu(s): 0.2% us, 0.2% sy, 0.0% ni, 86.9% id, 12.6% wa, 0.0% hi, 0.0% si

  Mem: 4037872k total, 4003648k used, 34224k free, 5512k buffers

  Swap: 7164948k total, 629192k used, 6535756k free, 3511184k cached

  查看12.6% wa

  IO等待所占用的CPU时间的百分比,高过30%时IO压力高

  其次、 用iostat -x 1 10

  如果 iostat 没有,要 yum install sysstat

  avg-cpu: %user %nice %sys %iowait %idle

  0.00 0.00 0.25 33.46 66.29

  Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util

  sda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

  sdb 0.00 1122 17.00 9.00 192.00 9216.00 96.00 4608.00 123.79 137.23 1033.43 13.17 100.10

  sdc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

  查看%util 100.10 %idle 66.29

  如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。

  idle小于70% IO压力就较大了,一般读取速度有较多的wait.

  同时可以结合vmstat 查看查看b参数(等待资源的进程数)

  vmstat -1

  如果你想对硬盘做一个IO负荷的压力测试可以用如下命令

  time dd if=/dev/zero bs=1M count=2048 of=direct_2G

  此命令为在当前目录下新建一个2G的文件

  我们在新建文件夹的同时来测试IO的负荷情况

  再通过如下脚本查看高峰的进程io情况

  monitor_io_stats.sh

  #!/bin/sh

  /etc/init.d/syslog stop

  echo 1 > /proc/sys/vm/block_dump

  sleep 60

  dmesg | awk '/(READ|WRITE|dirtied)/ {process[$1]++} END {for (x in process) \

  print process[x],x}' |sort -nr |awk '{print $2 " " $1}' | \

  head -n 10

  echo 0 > /proc/sys/vm/block_dump

  /etc/init.d/syslog start

  或者用iodump.pl脚本

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值