cv2技术原理-仿射变换
上一篇文章 图像旋转原理以及实现-手动实现cv2.getRotationMatrix2D的功能
1、仿射变换
仿射变换(Affine Transformation)是指在向量空间中进行一次线性变换(乘以一个矩阵)和一次平移(加上一个向量),变换到另一个向量空间的过程。
仿射变换代表的是两幅图之间的映射关系,仿射变换矩阵为2x3的矩阵,如下图中的矩阵M,其中的B起着平移的作用,而A中的对角线决定缩放,反对角线决定旋转或错切。
那么M矩阵该怎么计算出来呢?先留个悬念。。。
假设得到变换矩阵M之后该怎么使用呢?
2、变换矩阵M的使用
因为图像中像素点p的坐标可以使用(x,y)表示,变换之后该像素p的位置变换到了坐标(u ,v)。
所以仿射变换是一种二维坐标(x,y)到二维坐标(u,v)之间的线性变换,其数学表达式如下:
这个矩阵是2×3的,但是这会改变原始图像的维度,为此,增加一个维度,构造齐次变换矩阵3×3。
这就保持了图像的‘平直性’和‘平行性’。
平直性:直线、圆弧不变
平行性:平行关系不变,直线相对位置不变,但是夹角可能会改变。
3、opencv实现
import numpy as np
import matplotlib.pyplot as plt
import cv2
path = "5a1672eb1027c.jpg"
img = cv2.imread(path)
def show_img(img):
plt.figure(figsize=(10, 10))
plt.imshow(img[:,:,::-1])
plt.axis('off'</