cv2技术原理-仿射变换原理及手动实现


上一篇文章 图像旋转原理以及实现-手动实现cv2.getRotationMatrix2D的功能

1、仿射变换

仿射变换(Affine Transformation)是指在向量空间中进行一次线性变换(乘以一个矩阵)和一次平移(加上一个向量),变换到另一个向量空间的过程。
仿射变换代表的是两幅图之间的映射关系,仿射变换矩阵为2x3的矩阵,如下图中的矩阵M,其中的B起着平移的作用,而A中的对角线决定缩放,反对角线决定旋转或错切
变换矩阵
那么M矩阵该怎么计算出来呢?先留个悬念。。。
假设得到变换矩阵M之后该怎么使用呢?

2、变换矩阵M的使用

因为图像中像素点p的坐标可以使用(x,y)表示,变换之后该像素p的位置变换到了坐标(u ,v)。
图2
所以仿射变换是一种二维坐标(x,y)到二维坐标(u,v)之间的线性变换,其数学表达式如下:
数学表达
这个矩阵是2×3的,但是这会改变原始图像的维度,为此,增加一个维度,构造齐次变换矩阵3×3。
矩阵
这就保持了图像的‘平直性’和‘平行性’。
平直性:直线、圆弧不变
平行性:平行关系不变,直线相对位置不变,但是夹角可能会改变。

3、opencv实现

import numpy as np
import matplotlib.pyplot as plt
import cv2
path = "5a1672eb1027c.jpg"
img = cv2.imread(path)
def show_img(img):
    plt.figure(figsize=(10, 10))
    plt.imshow(img[:,:,::-1])
    plt.axis('off'</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值