解题笔记(15)——几个栈和递归的问题

本文通过五个问题探讨了栈和递归的应用,包括跳台阶问题、栈的push、pop序列验证、二元树深度计算、颠倒栈以及设计包含min函数的栈。每个问题都提供了思路分析和参考代码,旨在帮助读者理解和实践这些算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         本文介绍了几个栈和递归的问题,当然递归的本质就是栈。这些问题网上都能找到解答,自己思考并实现了一下,供网友参考。

         问题1:跳台阶问题。具体描述,一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。求总共有多少总跳法,并分析算法的时间杂度。

    思路:简单分析一下,这道题不难。假设f(n)为问题的解,从后往前推,最后一跳有两种情况,一是跳1级,二是跳2级,可以得出这个式子 f(n) = f(n-1) + f(n-2),其中f(1)=1,f(2)=2。递归实现如下,当然也可以用迭代。

    参考代码:

//函数功能 : 跳台阶问题
//函数参数 : n为台阶个数
//返回值 :   总的跳法
unsigned JumpSteps_Solution1(unsigned n)
{
	if(n <= 2)
		return n;
	else 
		return JumpSteps_Solution1(n - 1) + JumpSteps_Solution1(n - 2);
}

unsigned JumpSteps_Solution2(unsigned n)
{
	if(n <= 2)
		return n;

	unsigned sum = 0;
	unsigned f1 = 1, f2 = 2;
	for(unsigned i =3; i <= n; i++)
	{
		sum = f1 + f2; //f(n) = f(n-2) + f(n-1)
		f1 = f2;       //f(n-2) = f(n-1)
		f2 = sum;      //f(n-1) = f(n)
	}
	return sum;
}

    问题2:栈的push、pop序列。具体描述,输入两个整数序列。其中一个序列表示栈的push顺序,判断另一个序列有没有可能是对应的pop顺序。为了简单起见,我们假设push序列的任意两个整数都是不相等的。

    比如输入的push序列是1、2、3、4、5,那么4、5、3、2、1就有可能是一个pop系列。因为可以有如下的push和pop序列:
push 1,push 2,push 3,push 4,pop,push 5,pop,pop,pop,pop,这样得到的pop序列就是4、5、3、2、1。
但序列4、3、5、1、2就不可能是push序列1、2、3、4、5的pop序列。

    思路:用一个辅助栈。依次检查push序列的每个元素,如果该元素不等于pop序列的当前元素,则将这个元素压栈;如果相等,则检查push序列的下一个元素,同时pop序列的当前元素往前移1个。最后将辅助栈中的元素退栈,并与pop序列进行比较。最后辅助栈的元素为空,并且pop序列的当前位置为最后元素的下一个位置,则这个序列是pop序列。

    

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值