本文介绍了几个栈和递归的问题,当然递归的本质就是栈。这些问题网上都能找到解答,自己思考并实现了一下,供网友参考。
问题1:跳台阶问题。具体描述,一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。求总共有多少总跳法,并分析算法的时间杂度。
思路:简单分析一下,这道题不难。假设f(n)为问题的解,从后往前推,最后一跳有两种情况,一是跳1级,二是跳2级,可以得出这个式子 f(n) = f(n-1) + f(n-2),其中f(1)=1,f(2)=2。递归实现如下,当然也可以用迭代。
参考代码:
//函数功能 : 跳台阶问题
//函数参数 : n为台阶个数
//返回值 : 总的跳法
unsigned JumpSteps_Solution1(unsigned n)
{
if(n <= 2)
return n;
else
return JumpSteps_Solution1(n - 1) + JumpSteps_Solution1(n - 2);
}
unsigned JumpSteps_Solution2(unsigned n)
{
if(n <= 2)
return n;
unsigned sum = 0;
unsigned f1 = 1, f2 = 2;
for(unsigned i =3; i <= n; i++)
{
sum = f1 + f2; //f(n) = f(n-2) + f(n-1)
f1 = f2; //f(n-2) = f(n-1)
f2 = sum; //f(n-1) = f(n)
}
return sum;
}
问题2:栈的push、pop序列。具体描述,输入两个整数序列。其中一个序列表示栈的push顺序,判断另一个序列有没有可能是对应的pop顺序。为了简单起见,我们假设push序列的任意两个整数都是不相等的。
比如输入的push序列是1、2、3、4、5,那么4、5、3、2、1就有可能是一个pop系列。因为可以有如下的push和pop序列:
push 1,push 2,push 3,push 4,pop,push 5,pop,pop,pop,pop,这样得到的pop序列就是4、5、3、2、1。
但序列4、3、5、1、2就不可能是push序列1、2、3、4、5的pop序列。
思路:用一个辅助栈。依次检查push序列的每个元素,如果该元素不等于pop序列的当前元素,则将这个元素压栈;如果相等,则检查push序列的下一个元素,同时pop序列的当前元素往前移1个。最后将辅助栈中的元素退栈,并与pop序列进行比较。最后辅助栈的元素为空,并且pop序列的当前位置为最后元素的下一个位置,则这个序列是pop序列。