解题笔记(34)——求最长单调递减子序列

本文介绍了如何使用动态规划解决求解数组最长单调递减子序列的问题。通过建立辅助数组B,记录以数组A中每个元素结尾的最长递减子序列长度,最终找到最长递减子序列。算法的时间复杂度为O(n^2)。同时,提供了获取具体序列的逆向搜索方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      问题描述:求一个数组的最长递减子序列 比如{9,4,3,2,5,4,3,2}的最长递减子序列为{9,5,4,3,2}。

      思路:这是很经典的一个问题,用动态规划解决。假设源数组为A,定义一个辅助数组为B,B[i]表示以A[i]结尾的最长递减序列的长度。举个简单的例子,如果A[i]大于之前的所有元素,那么B[i] =

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值