Kaggle初体验-机器学习之泰坦尼克号乘客生存预测(上)

本文是作者的Kaggle机器学习初体验,通过分析泰坦尼克号数据,探讨船舱等级、票价、家庭成员数、年龄和性别等因素与乘客存活率的关系。初步发现,船票价格高、女性、小孩和老人存活率较高,家庭成员数2-4人的存活率也较高。然而,仅凭这些信息无法准确预测生存情况,需要进一步的特征选择和机器学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习数据分析也有段时间了,都只是使用一些简单图表来分析数据,本周将开启全新的学习旅程:机器学习(^_^偷笑)。

本次通过Kaggle所举办的泰坦尼克挑战赛 来机器学习分析并预测某一乘客的生存或死亡。Kaggle提供两部分数据,训练数据(train.csv)和测试数据(test.csv),我们通过对训练数据分析,构建一个模型,并用这个模型来加载预测数据,分析test.csv表中乘客生存或死亡。最后将分析结果导出提交到Kaggle上,Kaggle能根据你提交的数据评判得分并进行排名。

这是我提交的结果:
这里写图片描述

PS:如何使用Kaggle请看这里

泰坦尼克号首航中与一座冰山相撞,事故造成2224名乘客和机组人员中的1502人死亡。大面积伤亡的原因之一是船上没有足够的救生艇供乘客和船员使用。尽管在沉船事故中幸存下来的人有一些运气成分,但有些人会比其他人更容易存活。

那么什么样的人在泰坦尼克号事件中更容易存活?

所以接下来,就是分析的过程了。
工欲善其事,必先利其器。所以按照惯例,我们先盘点下将使用到的工具

  • Pandas Numpy
    数据处理
  • Matplotlib、seaborn
    数据可视化
  • sklearn
    机器学习和预测建模
  • Jupyter Notebook
    分析利器(也是本文写作的工具)

本次分析过程分为两部分进行,一是常规分析,二是机器学习分析。

直接去下篇:https://blog.csdn.net/wuzlun/article/details/80190331

# 导入本次用到的工具

# 使用该魔法,不用写plt.show()
%matplotlib inline  

import warnings
# 忽略警告提示
warnings.filterwarnings('ignore')
warnings.filterwarnings('ignore', category=DeprecationWarning)

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号

# seaborn作为matplotlib的补充及扩展
import seaborn as sns  

一、常规分析

通过对训练数据(train.csv)简单的分析,得出结论。

# 导入训练数据
data = pd.read_csv('./data/train.csv')
# 查看数据大小
# data.shape
print('训练数据有',data.shape[0],'行,',data.shape[1],'列')

# 观察数据结构,返回前6行
data.head(6)
训练数据有 891 行, 12 列
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值