tflite添加自定义op

本文详细介绍如何在TensorFlow Lite中添加自定义OP,包括创建和注册OP的步骤,以及必要的编译流程。通过具体示例,如crop_and_resize操作的实现,帮助读者理解整个过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 添加自定义 op 的文件

文件:tensorflow/lite/kernels/crop_and_resize.cc

namespace tflite {
namespace ops {
namespace custom {
namespace crop_and_resize {

constexpr int kInputTensor = 0;
constexpr int kBoxesTensor = 1;
constexpr int kBoxIndTensor = 2;
constexpr int kSizeTensor = 3;
constexpr int kOutputTensor = 0;

...

TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node)
{
  TF_LITE_ENSURE_EQ(context, NumInputs(node), 4);
  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);

...

}

TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node)
{

...

  return kTfLiteOk;
}
}  // namespace crop_and_resize

TfLiteRegistration* Register_CROP_AND_RESIZE() {
  static TfLiteRegistration r = {nullptr, nullptr,
                                crop_and_resize::Prepare,
                                crop_and_resize::Eval};
  return &r;
}

}  // namespace builtin
}  // namespace ops
}  // namespace tflite
2 注册自定义 op

文件:tensorflow/lite/kernels/register.cc

namespace custom {

TfLiteRegistration* Register_AUDIO_SPECTROGRAM();
TfLiteRegistration* Register_LAYER_NORM_LSTM();
TfLiteRegistration* Register_MFCC();
TfLiteRegistration* Register_DETECTION_POSTPROCESS();
TfLiteRegistration* Register_RELU_1();
TfLiteRegistration* Register_CROP_AND_RESIZE();

}  // namespace custom

...
...
...

  // TODO(andrewharp, ahentz): Move these somewhere more appropriate so that
  // custom ops aren't always included by default.
  AddCustom("Mfcc", tflite::ops::custom::Register_MFCC());
  AddCustom("AudioSpectrogram",
            tflite::ops::custom::Register_AUDIO_SPECTROGRAM());
  AddCustom("LayerNormLstm", tflite::ops::custom::Register_LAYER_NORM_LSTM());
  AddCustom("Relu1", tflite::ops::custom::Register_RELU_1());
  AddCustom("TFLite_Detection_PostProcess",
            tflite::ops::custom::Register_DETECTION_POSTPROCESS());
  AddCustom("Crop_and_Resize",
            tflite::ops::custom::Register_CROP_AND_RESIZE());
}
3 修改编译文件

文件:tensorflow/lite/kernels/BUILD

cc_library(
    name = "builtin_op_kernels",
    srcs = [
        "activations.cc",
        "add.cc",
        "arg_min_max.cc",

...

        "crop_and_resize.cc",
],
4 按照官方教程 源码编译
4.1 安装bazel

bazel官网安装教程

4.2 配置编译系统
cd tensorflow
./configure
4.3 Bazel build

支持GPU

bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
4.4 编译软件包
./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
4.5 安装软件包
pip3 install /tmp/tensorflow_pkg/tensorflow-version-tags.whl --user
<think>我们正在处理一个关于将TensorFlow Lite Micro模型移植到新平台的问题。根据提供的引用材料,特别是引用[4],我们可以知道移植过程需要一些库文件和资源。同时,引用[3]提到了模型转换,即如何将TensorFlow模型转换为TensorFlow Lite模型(.tflite格式)。但是,用户的问题是如何将已经转换好的模型移植到新平台(可能是新的微控制器平台)。 步骤概述: 1. 确保模型已经转换为TensorFlow Lite Micro支持的格式(.tflite)。 2. 为新平台准备TensorFlow Lite Micro库的移植层(即实现特定于平台的函数,例如内存管理、调试输出等)。 3. 将TensorFlow Lite Micro库和模型集成到新平台的构建系统中。 具体步骤: 一、模型转换 首先,确保你有一个TensorFlow Lite模型(.tflite文件)。如果没有,可以使用TensorFlow Lite转换器(TFLite Converter)将TensorFlow模型转换为TensorFlow Lite格式。转换方法可以参考引用[3]。 二、移植TensorFlow Lite Micro库 TensorFlow Lite Micro库是平台无关的,但它依赖于一些平台特定的函数。因此,移植到新平台需要实现这些函数。这些函数通常包括: - 内存管理(例如,提供内存分配和释放的函数) - 调试日志(例如,将调试信息输出到串口) - 时间函数(用于性能分析) - 其他硬件相关的操作(如某些优化内核的实现) 引用[4]中提到了需要的一些库文件,包括CMSIS、CMSIS-NN、CMSIS-DSP等。如果你的新平台是ARM Cortex-M系列,那么可以利用这些库来加速运算。如果不是,你可能需要自己实现相应的优化。 移植步骤: 1. 从TensorFlow Lite Micro的GitHub仓库(https://github.com/tensorflow/tflite-micro)获取源代码。 2. 创建一个新的平台目录,例如在`tensorflow/lite/micro/kernels/`下为你的平台添加特定实现(或者使用现有的参考实现进行修改)。 3. 实现或修改以下文件: - `micro_time.h`和`micro_time.cpp`:提供时间函数。 - `debug_log.h`和`debug_log.cpp`:提供调试输出函数。 - `memory_helpers.h`和`memory_helpers.cpp`(如果需要):提供内存分配函数,但通常TFLite Micro使用静态内存分配,所以你可能需要调整内存计划。 4. 实现特定于平台的优化内核(可选)。例如,如果你的平台有DSP指令,你可以为某些算子(如卷积)编写优化版本。 三、集成到构建系统 将TensorFlow Lite Micro库和你的模型集成到新平台的构建系统中(例如Makefile, CMake等)。你需要包含必要的头文件路径,并链接生成的库。 四、编写应用代码 在你的应用程序中,你需要加载模型,设置输入数据,调用解释器(interpreter)进行推理,并获取输出。 示例代码结构: ```cpp #include "tensorflow/lite/micro/micro_interpreter.h" #include "tensorflow/lite/micro/micro_mutable_op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" // 加载模型(通常将模型数组放在一个文件中,用数组表示) const tflite::Model* model = tflite::GetModel(g_model); // 创建操作解析器,添加模型用到的操作 tflite::MicroMutableOpResolver resolver; resolver.AddFullyConnected(); resolver.AddSoftmax(); // ... 添加其他操作 // 分配内存(通常是一个静态数组) constexpr int kTensorArenaSize = 1024 * 10; uint8_t tensor_arena[kTensorArenaSize]; // 创建解释器 tflite::MicroInterpreter interpreter(model, resolver, tensor_arena, kTensorArenaSize); interpreter.AllocateTensors(); // 获取输入和输出张量 TfLiteTensor* input = interpreter.input(0); TfLiteTensor* output = interpreter.output(0); // 设置输入数据(例如,将数据复制到input->data.f中) // ... // 运行推理 TfLiteStatus invoke_status = interpreter.Invoke(); if (invoke_status != kTfLiteOk) { // 处理错误 } // 获取输出 // ... ``` 五、测试与优化 在移植完成后,进行测试以确保模型在新平台上正确运行。同时,根据资源限制(内存、计算能力)进行优化,可能包括调整张量内存区域大小、使用更高效的算子实现等。 注意事项: - 新平台的内存限制:TensorFlow Lite Micro使用静态内存分配,因此需要预先分配一个足够大的内存区域(tensor_arena)。你需要根据模型的需求调整这个大小。 - 算子支持:确保你的模型用到的所有算子都在操作解析器中添加了。如果某个算子没有实现,你可能需要自己实现或使用参考实现。 参考引用: [^3]:TensorFlow Lite转换器实战,用于模型转换。 [^4]:资源需求,包括需要的一些库文件。 相关问题: 1. 如何确定TensorFlow Lite Micro模型在新平台上的内存需求? 2. 在移植TensorFlow Lite Micro到新平台时,如何调试常见问题? 3. TensorFlow Lite Micro支持哪些算子?如何添加自定义算子? 4. 如何优化TensorFlow Lite Micro模型在新平台上的性能?</think>### 如何在TensorFlow Lite Micro中移植模型到新平台 移植TensorFlow Lite Micro(TFLM)模型到新平台需遵循以下步骤,确保模型在资源受限的嵌入式设备上高效运行: --- ### **移植步骤** #### 1. **模型转换与准备** - 将原始TensorFlow模型转换为`.tflite`格式: ```python import tensorflow as tf converter = tf.lite.TFLiteConverter.from_saved_model("your_model") converter.optimizations = [tf.lite.Optimize.DEFAULT] # 启用量化优化 tflite_model = converter.convert() with open("model.tflite", "wb") as f: f.write(tflite_model) ``` - **关键点**:使用量化(如INT8)减小模型体积,适配MCU资源限制[^3]。 #### 2. **平台适配层实现** TensorFlow Lite Micro依赖以下平台特定函数,需在新平台实现: - **内存管理**:重写`micro_allocator.cpp`中的内存分配接口。 - **调试输出**:实现`debug_log.h`中的日志函数(如串口输出)。 - **时间函数**:在`micro_time.[h/cpp]`中提供计时器接口(用于性能分析)。 - **算子加速**:若平台有硬件加速(如DSP),实现定制化算子(参考CMSIS-NN库[^4])。 #### 3. **集成TFLM库** - **添加依赖库**: - 核心库:`tensorflow-lite-micro`(GitHub主分支)[^4]。 - 硬件加速库(可选):CMSIS-NN(ARM Cortex-M)、CMSIS-DSP(数字信号处理)[^4]。 - **构建系统配置**: - 修改Makefile/CMake,包含TFLM头文件路径。 - 链接静态库:`libtensorflow-microlite.a`。 #### 4. **模型部署与推理** ```cpp #include "tensorflow/lite/micro/micro_interpreter.h" #include "tensorflow/lite/micro/micro_mutable_op_resolver.h" // 1. 加载模型 const tflite::Model* model = tflite::GetModel(g_model_data); // 2. 注册算子(按需添加tflite::MicroMutableOpResolver resolver; resolver.AddFullyConnected(); resolver.AddSoftmax(); // 3. 分配张量内存(静态分配) constexpr int kTensorArenaSize = 2048; uint8_t tensor_arena[kTensorArenaSize]; // 4. 初始化解释器 tflite::MicroInterpreter interpreter( model, resolver, tensor_arena, kTensorArenaSize); interpreter.AllocateTensors(); // 5. 输入数据 & 推理 TfLiteTensor* input = interpreter.input(0); memcpy(input->data.f, input_data, input->bytes); interpreter.Invoke(); ``` **注意**:`kTensorArenaSize`需根据模型调整(可通过`interpreter.arena_used_bytes()`调试)[^4]。 #### 5. **验证与优化** - **测试覆盖**:使用TFLM单元测试框架验证算子行为。 - **性能调优**: - 启用CMSIS-NN加速卷积运算(提升5x速度)[^4]。 - 减少内存拷贝:使用`micro_graph.Invoke()`直接处理数据流。 - **功耗控制**:利用MCU低功耗模式,在推理间隙休眠。 --- ### **关键挑战与解决方案** | 挑战 | 解决方案 | |---------------------|--------------------------------------------------------------------------| | **内存不足** | 启用量化、使用内存复用(`tensor_arena`共享)[^4] | | **算子不支持** | 自定义算子实现(参考`tflite/micro/kernels`) | | **实时性不足** | 硬件加速库集成(如CMSIS-NN)、算子融合优化[^2] | | **调试困难** | 实现`DebugLog()`输出到串口,结合TFLite的`MicroErrorReporter`[^4] | --- ### **示例平台适配** - **ARM Cortex-M**:直接使用CMSIS-NN库和Keil Pack支持[^4]。 - **RISC-V**:需实现基础函数(内存/时间),并优化关键算子(如卷积)。 - **自定义MCU**:从`reference_kernels`开始,逐步替换为硬件加速实现。 --- ### **引用** [^1]: TensorFlow Lite Micro专为MCU设计,使边缘设备具备本地机器学习能力,无需依赖云端。 [^2]: TensorFlow Lite针对设备端优化,解决延时、隐私和功耗等约束。 [^3]: 使用TensorFlow Lite转换器生成优化的FlatBuffer格式模型(.tflite)。 [^4]: 移植需集成CMSIS库并实现平台适配层(如内存管理和调试输出)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值