相干态:通用构造与应用
1. 相干态的构造方案
在相干态的构造中,我们从一些基本要素开始。首先是一组经典意义上的参数或数据集合 (C),例如粒子在直线上运动的初始条件集合,它配备了勒贝格测度 (\frac{d^2z}{\pi})。接着是“大”希尔伯特空间 (L^2(C, \frac{d^2z}{\pi})),在信号分析框架中,它可以看作是有限能量图像的空间。
我们还需要一个正交函数集 ({e_n(z) \in L^2(C, \frac{d^2z}{\pi}), n \in \mathbb{N}}),它满足概率恒等式 (\sum_{n = 0}^{\infty} |e_n(z)|^2 = 1)。基于这些,我们得到了一族标准相干态 (|z\rangle),其中 (e_n(z)) 是在基元素 (e_n)(或 (|n\rangle))上的正交投影。恒等式 (\sum_{n = 0}^{\infty} |e_n(z)|^2 = 1) 保证了态的归一化 (\langle z|z\rangle = 1),而 (e_n(z)) 的正交性则保证了在相应希尔伯特空间中的单位分解。
下面是这个构造方案的关键要素总结:
|要素|描述|
| ---- | ---- |
|参数集合 (C)|粒子运动初始条件集合,配备勒贝格测度 (\frac{d^2z}{\pi})|
|希尔伯特空间 (L^2(C, \frac{d^2z}{\pi}))|信号分析中的有限能量图像空间|
|正交函数集 ({e_n(z)})|(\sum_{n = 0}^{\infty} |e_n(z)|^2 = 1)|
|相干态 (|z\rangle)|(e_n(z)) 为基元素上的正交