相干态或框架量化:理论与应用
1. 引言
物理学作为自然科学的一部分,主要研究“自然”,更确切地说是“时间”“空间”“物质”“能量”和“相互作用”。这些研究对象在特定时刻会以“显著”数据的形式呈现,如位置、速度和频率等。那么,如何处理这些数据就成了一个关键问题,而这又涉及到选择合适的分析视角或框架。
当我们面对一组以特定数学形式编码的“原始”数据,并通过某种测量(即赋予数据子集重要性权重的函数)获得这些数据时,我们可以通过巧妙选择最合适的分析框架,来对数据的不同方面赋予不同程度的重要性。
在这个通用方案中,我们引入了量子处理的概念,也就是从量子视角来考虑对象,就像在量子力学中对经典相空间进行量化一样。在一定程度上,量化不仅仅局限于物理学的特定领域,如力学或场论,而是属于一个更广泛的学科范畴。
2. 量化的一些基本概念
量化通常是将经典可观测量的代数 (A_{cl}) 与量子可观测量的代数 (A_{q}) 建立联系的过程。 (A_{cl}) 通常是辛(或相)空间 (X) 上可导函数的交换泊松代数,而 (A_{q}) 一般是非交换的。量化过程需要建立一个对应关系 (A_{cl} \to A_{q} : f \to A_{f}),并且需要满足以下基本条件:
- 常数函数 (1) 对应 (A_{q}) 中的单位元。
- (A_{q}) 的对易关系要重现 (A_{cl}) 的泊松关系,同时要实现海森堡代数。
- (A_{q}) 要实现为作用于某个希尔伯特空间的算子代数。
大多数物理量子理论可以通过规范量化过程得到,但该过程的规则往往显得比较随意,而且很难协变地实现,因此难以推广到许多系统。几何量化