36(牛客Top100)-85.最大矩阵

该博客详细介绍了如何使用单调栈解决在二维二进制矩阵中找出只包含1的最大矩形并计算其面积的问题。方法1通过维护左右边界,结合柱状图思想,实现了O(mn)的时间复杂度和O(mn)的空间复杂度解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。
思路:先抄下来,我也不懂
方法1:单调栈

public int maximalRectangle(char[][] matrix) {
        int m = matrix.length;
        if (m == 0) {
            return 0;
        }
        int n = matrix[0].length;
        int[][] left = new int[m][n];

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == '1') {
                    left[i][j] = (j == 0 ? 0 : left[i][j - 1]) + 1;
                }
            }
        }

        int ret = 0;
        for (int j = 0; j < n; j++) { // 对于每一列,使用基于柱状图的方法
            int[] up = new int[m];
            int[] down = new int[m];

            Deque<Integer> stack = new LinkedList<Integer>();
            for (int i = 0; i < m; i++) {
                while (!stack.isEmpty() && left[stack.peek()][j] >= left[i][j]) {
                    stack.pop();
                }
                up[i] = stack.isEmpty() ? -1 : stack.peek();
                stack.push(i);
            }
            stack.clear();
            for (int i = m - 1; i >= 0; i--) {
                while (!stack.isEmpty() && left[stack.peek()][j] >= left[i][j]) {
                    stack.pop();
                }
                down[i] = stack.isEmpty() ? m : stack.peek();
                stack.push(i);
            }

            for (int i = 0; i < m; i++) {
                int height = down[i] - up[i] - 1;
                int area = height * left[i][j];
                ret = Math.max(ret, area);
            }
        }
        return ret;
    }

时间复杂度:O(mn)
空间复杂度:O(mn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值