vscode(五):pyhton+opencv环境搭建

本文详细介绍如何在Anaconda环境下安装Python与OpenCV,并配置VSCode实现Python代码自动补全功能。首先,通过Anaconda进行Python环境搭建,接着从官网下载OpenCV并正确配置到Python环境中,最后设置VSCode插件完成代码补全。适合初学者快速上手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、pyhton安装

  • anaconda
  • vscode安装插件
    在这里插入图片描述

二、opencv安装

  • 官网下载
    下载地址
    在这里插入图片描述
  • 双击安装,然后进入到安装文件夹内的opencv\build\python\cv2,根据你安装的python版本选择对应的文件夹
    -

把里面的cv2.cp37-win_amd64.pyd复制到Anaconda3\Lib\site-packages

三、python代码自动补全

  1. Ctrl+Shift+p
    -
  2. 输入python.autoComplete.addBrackets
    在这里插入图片描述
  3. 打开settings.json入下面两行
    在这里插入图片描述
  4. 重启vscode
<think>我们正在配置PyTorch的CPU版本环境,不涉及GPU(CUDA)相关组件。根据引用内容,我们可以通过Anaconda创建环境并使用pip或conda安装PyTorchCPU版本。下面分步骤说明:1.**安装Anaconda(如果尚未安装)**:-前往[Anaconda官网](https://www.anaconda.com/download)下载适合你操作系统的安装包(推荐选择Python3.x版本)。-按照官方指引完成安装。2.**创建并激活虚拟环境(推荐)**:-打开AnacondaPrompt(Windows)或终端(Linux/macOS)。-创建一个新的虚拟环境(例如命名为`pytorch_cpu`,并指定Python版本,这里以Python3.8为例):```bashcondacreate-npytorch_cpupython=3.8```-激活环境:```bashcondaactivatepytorch_cpu```3.**配置清华镜像源(国内用户推荐)**:-设置pip的清华镜像源(根据引用[1]和[2]):```bashpipconfigsetglobal.index-urlhttps://pypi.tuna.tsinghua.edu.cn/simple```4.**安装PyTorchCPU版本**:-根据引用[3]中提到的方式,使用conda安装PyTorch。但是注意,引用[3]中的命令是针对GPU版本的,而且使用了`-cpytorch`(代表从官方源下载,可能速度较慢)。因此我们调整如下:-**方法一(使用pip安装)**:从PyTorch官方网站获取适合CPU的pip安装命令(最新版本)。以PyTorch2.0.1为例:```bashpipinstalltorch==2.0.1torchvision==0.15.2torchaudio==2.0.2--index-urlhttps://download.pytorch.org/whl/cpu```-**方法二(使用conda安装)**:同样,我们可以使用conda安装,并指定清华源(需要添加conda的镜像源)。在安装前,我们可以添加清华的conda镜像源(根据实际情况选择是否添加):```bashcondaconfig--addchannelshttps://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/condaconfig--addchannelshttps://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/condaconfig--addchannelshttps://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/condaconfig--setshow_channel_urlsyes```然后安装(注意,从清华源安装PyTorchCPU版本,需要指定`pytorch`和`cpuonly`):```bashcondainstallpytorchtorchvisiontorchaudiocpuonly-cpytorch```注意:这里使用`-cpytorch`可能会从官方源下载,为了确保使用清华源,我们可以去掉`-cpytorch`,因为我们已经添加了pytorch的清华镜像通道。所以可以尝试:```bashcondainstallpytorchtorchvisiontorchaudiocpuonly```**注意**:由于conda源中的包可能更新不及时,或者清华镜像源中可能没有最新版本的PyTorch,如果安装失败,建议使用pip安装。5.**验证安装**:-在激活的环境下,打开Python解释器:```bashpython```-输入以下代码:```pythonimporttorchprint(torch.__version__)#查看PyTorch版本print(torch.cuda.is_available())#查看CUDA是否可用,CPU版本应返回False```如果没有报错且输出版本号,同时`torch.cuda.is_available()`返回`False`,表明PyTorchCPU版本安装成功。**总结**:-推荐使用pip安装,因为pip可以直接从PyTorch官方下载CPU版本的预编译包(速度较快)。-如果使用conda安装CPU版本,注意添加镜像源并安装`cpuonly`包。根据引用内容,我们整合了两种安装方法,用户可以根据实际网络情况选择。引用说明:-设置清华镜像源可以参考引用[1][^1]和引用[2][^2]。-使用conda安装虚拟环境和PyTorch可以参考引用[3][^3]。§§相关问题§§1.如何配置PyTorch的GPU环境?2.安装PyTorch时需要安装哪些附加库(如torchvision,torchaudio)?3.如何验证PyTorch是否正确安装?</think> ### PyTorch CPU环境配置教程(Anaconda方案) 以下是详细的环境配置步骤(针对CPU版本): #### 1. 安装Anaconda - 下载安装包:[Anaconda官网](https://www.anaconda.com/download) - 选择Python 3.x版本(推荐Python 3.8-3.10) - 按默认设置完成安装(勾选"Add to PATH"选项) #### 2. 创建独立环境 ```bash # 创建名为pytorch_env的Python环境 conda create -n pytorch_env python=3.9 # 激活环境 conda activate pytorch_env ``` #### 3. 设置清华镜像源(国内加速) ```bash # 配置pip镜像源 pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` #### 4. 安装PyTorch CPU版本 ```bash # 安装最新CPU版本 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu ``` #### 5. 验证安装 创建测试文件`test.py`: ```python import torch print(f"PyTorch版本: {torch.__version__}") print(f"CUDA可用性: {torch.cuda.is_available()}") # 应返回False x = torch.tensor([1.0, 2.0]) y = x * 2 print("张量运算结果:", y) ``` 运行结果应显示: ``` PyTorch版本: x.x.x CUDA可用性: False 张量运算结果: tensor([2., 4.]) ``` #### 可选:安装依赖库 ```bash pip install numpy matplotlib jupyter ``` #### 注意要点 1. 必须使用`--index-url https://download.pytorch.org/whl/cpu`确保安装CPU版本[^1][^3] 2. PyTorch CPU版本已包含BLAS优化库(MKL等),无需单独安装 3. 安装torchvision时系统会自动安装Pillow等图像处理依赖库
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值