随着互联网技术的飞速发展和电子商务的兴起,电商平台积累了大量的用户数据,如浏览记录、购买行为、评价信息等。这些数据蕴含着丰富的用户行为信息,对于电商平台来说,如何有效地挖掘和分析这些数据,以了解用户的购物习惯、偏好和行为模式,成为提升用户体验、提高销售额和竞争力的重要手段。
Django作为一种流行的Python Web框架,具有快速开发、简洁明了的优点,被广泛应用于各类项目中。Hadoop是一个开源的分布式计算系统,能够对大数据进行存储和处理,被许多企业用于大数据分析。将Django与Hadoop结合起来,可以构建一个高效、可扩展的电商用户行为分析系统,为企业提供有力的数据支持。
通过对电商用户行为数据的深入分析和挖掘,为企业提供精准的用户画像和购物推荐,从而提升用户体验,提高销售额,增强竞争力。同时,本研究还将为我国电商行业的健康发展提供有益借鉴,推动电商业务的快速发展
本项目所设计的基于Hadoop的电商用户行为系统分析分析用户为负责电商用户行为系统分析人员,传统的电商用户行为系统分析分析处理后的数据会产生一些比较复杂且难以理解的数据,直接将这些数据提供给电商用户行为系统分析人员或者产品经理是非常不友好的。所以需要将分析好的数据以可视化界面的方式去展示给电商用户行为系统分析人员及网络平台负责策略调整的产品经理。在基于Hadoop的电商用户行为系统分析分析的可视化展示功能中主要分为五个模块,分别是Davinci登录模块、电商用户行为系统分析预测、用户管理和数据,如图3-2所示。