机器学习(一)

机器如何学习,学习是什么?

现在,我想表述一下自己的感悟和学习。

人类认识这个世界的初始,就是探索世界,总结规律,应用生活。首先我们面对的第一个问题,那就是探索的世界是如何的呢?

我们从出生开始,慢慢认识这个世界,是身边人的影响,长辈告诉我们这是什么,那是什么,我们接受这些信息,从而总结自己的经验库,也就是大脑的记忆。

这里举个例子,比如小猫,两只耳朵,四条腿,毛茸茸的,有胡须,而这些都是经验特征,记住在脑海中。当然,这个时候出现一只狗,如果仅仅按照刚刚提出的这些特征,那么我们也会认为是猫,因为它们符合特征呀。长辈往往指出错误,宝宝,这个是狗狗,这个时候不同的特征往往会将这两种物种区分开来。人类的大脑分析问题时,看到的特征往往比我提出的特征更多,所以人类很聪明,看到这些差异,不同的特征往往会将这两种物种区分开来。

好,等大家看懂了上面我讲的例子。这时大家会说分清楚猫猫狗狗有什么厉害,不是很简单吗,那我说如果让机器来分类呢。这个时候,大家反省,怎么让机器来学会来区分真的很难。为什么,这些特征很多呀。但是不要急,现在的你明白了,机器学习学习是什么,是特征。(特征英文是feature)

学习就是总结这些特征,并记住,在未来碰到新的猫猫狗狗时,我们很高兴,因为我们认识了新的物种,那么这就是应用了

以上是我个人的观点,不严谨处请大家批评指正。

#############################################

下面,我们回到机器学习上来。现在给大家讲个故事:图灵测试

图灵测试由计算机科学之父阿兰·图灵于1950年提出,是衡量机器是否具备人类智能的一项思想实验。其核心非常简单:在一个盲测环境中,人类测试者通过文本方式与隔板的另一方进行对话。另一方可能是一个人,也可能是一台机器。如果测试者在持续一段时间的交流后,无法可靠地区分对方是机器还是人类,那么就可以认为这台机器通过了图灵测试。

这个猜想是不是很可怕,现在我们的deepseek好像实现了,哈哈哈。

那么机器如何认识世界的?想人类一样五官感悟吗?不是的。

机器是铁做的,需要用电是不是。那么机器的世界是仅有两个变化:断电和供电。那么这里理解也就是0和1,是一个二进制的世界,既然可以二进制,那么就可以实现十进制,因为二进制可以转换嘛。所以机器的世界是一个数字的世界,我们大脑中的特征,机器里面就是数据了

那么机器天然处理数据敏感,所以我们明白了,机器处理的特征原来就是数据呀。那么是不是说明机器学习,就是数据处理呢?

当然不是,但我们现在明白机器学习的第一步:把特征转换为数据,数据是机器看得懂的“特征”

机器学习 = 数据处理 + 模型训练 + 评估优化 + 预测推理。数据处理是其中不可或缺的关键环节,但并非全部。

初步认识后,大家也可以思考如今的世界认识。

学习的定义也希望对大家能有帮助,未来学习中,希望大家记忆,总结,应用。

#################################

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值