【CodeForces】233B - Non-square Equation(思维)

本文探讨了一种特殊的非平方方程 x^2 + s(x) * x - n = 0 的求解方法,其中 s(x) 表示 x 的十进制数位之和。文章给出了一种通过枚举 s(x) 的可能值并验证 x 是否为正整数的方法来寻找最小正整数解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:点击打开链接

B. Non-square Equation
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Let's consider equation:

x2 + s(xx - n = 0, 

where x, n are positive integers, s(x) is the function, equal to the sum of digits of number x in the decimal number system.

You are given an integer n, find the smallest positive integer root of equation x, or else determine that there are no such roots.

Input

A single line contains integer n (1 ≤ n ≤ 1018) — the equation parameter.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cincout streams or the %I64dspecifier.

Output

Print -1, if the equation doesn't have integer positive roots. Otherwise print such smallest integer x (x > 0), that the equation given in the statement holds.

Examples
input
2
output
1
input
110
output
10
input
4
output
-1
Note

In the first test case x = 1 is the minimum root. As s(1) = 1 and 12 + 1·1 - 2 = 0.

In the second test case x = 10 is the minimum root. As s(10) = 1 + 0 = 1 and 102 + 1·10 - 110 = 0.

In the third test case the equation has no roots.




本在考虑4*n开根号的情况。后来发现还是太复杂不好化简。

由观察知道S(x)的范围只能是1~100,那么就枚举求x,然后验证就行了。


(之前机房来老师关门了,没贴代码=。=)


代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define LL __int64
int getDecimal(int x)
{
	int sum = 0;
	while (x)
	{
		sum += x % 10;
		x /= 10;
	}
	return sum;
}
int main()
{
	LL n;
	double x;
	scanf ("%I64d",&n);
	for (int i = 1 ; i <= 100 ; i++)
	{
		x = (sqrt(i*i+4*n) - i) / 2;
		if (x == (LL)x && getDecimal(x) == i)
		{
			printf ("%.lf\n",x);
			return 0;
		}
	}
	puts("-1");
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值