引言:数据战疫——当数据科学家扛起“武器”
2020年初,一场突如其来的全球性公共卫生危机——COVID-19(新型冠状病毒肺炎),深刻地改变了我们每个人的生活。在面对这场没有硝烟的战争时,除了医护人员在前线与病毒搏斗,还有一群默默的英雄——数据科学家和分析师,他们利用手中的“数据武器”,昼夜不停地监测、分析、预测疫情走势,为政府决策、资源调配、公众科普提供了至关重要的支撑。
然而,数据分析的基石,永远是高质量、权威、及时的数据源。在疫情初期,各种信息鱼龙混杂,数据统计口径不一,给准确分析带来了巨大挑战。正是在这样的背景下,约翰霍普金斯大学(Johns Hopkins University, JHU)系统科学与工程中心(Center for Systems Science and Engineering, CSSE) 开源并持续维护的COVID-19数据集,成为了全球疫情数据分析的“灯塔”和“核武器”。
本文将作为一篇CSDN的“干货”推荐文章,深入剖析这个被全球广泛引用的GitHub项目。我将带你从数据结构的理解、数据获取、清洗预处理,到核心分析实践,乃至高级应用与未来展望,为你呈现一个完整且实用的数据分析工作流。无论你是数据科学新手、经验丰富的分析师,还是对公共卫生数据分析感兴趣的开发者,这篇文章都将为你提供宝贵的洞察和实战代码。
读完本文,你将:
- 全面了解JHU CSSE COVID-19数据集的构成与特点。
- 掌握从GitHub直接获取最新疫情数据的实用技巧。
- 学会高效清洗、转换并准备疫情数据,为分析打下坚实基础。
- 能够运用Python和Pandas进行核心的疫情趋势分析、国家对比和关键指标计算。
- 对基于疫情数据的更高级应用和挑战有清晰的认知。
废话不多说,让我们立即进入这场数据的“战疫”之旅!
第一章:JHU CSSE COVID-19数据集——权威之源
在众多疫情数据源中,JHU CSSE数据集之所以能够脱颖而出,并被包括世界卫生组织(WHO)在内的众多国际机构、科研团队和媒体广泛引用,主要在于其:
- 权威性与公信力: 由全球顶尖的学术机构——约翰霍普金斯大学CSSE团队负责维护,数据来源经过严格筛选和核实。
- 全球覆盖与细致粒度: 提供了全球几乎所有国家和地区的疫情数据,部分地区甚至细化到省/州、县级行政区。
- 高频更新: 数据每日定时更新,确保用户能够获取到最新的疫情发展情况。
- 开放性与易用性: 数据以CSV文件的形式公开在GitHub上,方便任何人直接下载和使用,极大地降低了数据获取门槛。
1.1 GitHub项目结构概览
首先,让我们来看一下这个GitHub项目的核心结构。了解这些目录和文件的作用,是高效利用数据的第一步。
项目的根目录下主要包含以下几个关键目录:
COVID-19/
├── csse_covid_19_data/
│ ├── csse_covid_19_daily_reports/ # 每日报告数据
│ ├── csse_covid_19_daily_reports_us/ # 美国各州每日报告数据
│ ├── csse_covid_19_time_series/ # 时间序列数据 (核心)
│ ├── csse_covid_19_test_data/ # 测试数据 (可能包含临时或实验性数据)
│ └── UID_ISO_FIPS_LookUp_Table.csv # 地理信息查找表
├── README.md # 项目说明文件
├── LICENSE # 开源许可
└── ... (其他辅助文件或历史数据)
结构图:JHU CSSE COVID-19 数据集核心结构
1.2 核心数据文件详解
在 csse_covid_19_data
目录下,我们主要关注以下两个子目录:
-
csse_covid_19_time_series/
(时间序列数据):
这是最常用的数据集,包含了全球各地区从疫情爆发初期到现在的累计确诊、死亡和康复人数。time_series_covid19_confirmed_global.csv
:全球累计确诊病例数。time_series_covid19_deaths_global.csv
:全球累计死亡病例数。time_series_covid19_recovered_global.csv
:全球累计康复病例数。(注:部分国家已停止报告此数据,或数据准确性较低)。
共同特点:
- 列结构:
Province/State
,Country/Region
,Lat
(纬度),Long
(经度), 紧接着是按日期命名的列(如1/22/20
,1/23/20
…),这些日期列的值是该日期下的累计病例数。 - 数据特点: 宽格式 (wide format),日期作为列名,每个单元格是累计值。
-
csse_covid_19_daily_reports/
(每日报告数据):
这个目录包含了每日的疫情快照,文件名以MM-DD-YYYY.csv
格式命名,例如01-22-2020.csv
。每日报告提供了更详细的地理信息和一些衍生指标。共同特点:
- 列结构: 比时间序列数据更丰富,包含
FIPS
,Admin2
,Province_State
,Country_Region
,Last_Update
,Lat
,Long_
,Confirmed
,Deaths
,Recovered
,Active
,Combined_Key
,Incident_Rate
,Case_Fatality_Ratio
等。 - 数据特点: 长格式 (long format),每个日期对应一个文件,文件中包含当天各地区的累计和实时衍生指标。
- 列结构: 比时间序列数据更丰富,包含
对于大多数时间序列分析和趋势分析,我们通常会选择使用 csse_covid_19_time_series
中的文件,因为它已经将历史数据整合到一个文件中,便于我们进行时间轴上的操作。而 csse_covid_19_daily_reports
则适用于需要特定日期详细快照和更多地理信息的场景。
第二章:数据探秘——结构解析与数据获取
理解数据结构是高效分析的前提。本章将详细介绍如何从GitHub获取JHU CSSE数据集,并初步窥探其原始面貌。
2.1 数据获取策略
JHU CSSE数据集托管在GitHub上,这意味着我们可以通过多种方式获取它:
- 手动下载: 直接访问GitHub页面,点击文件,然后点击“Raw”按钮,保存为CSV文件。适用于偶尔或小规模的数据获取。
git clone
: 如果你需要获取整个历史版本库并希望定期更新,可以直接克隆这个GitHub仓库。
然后通过git clone https://github.com/CSSEGISandData/COVID-19.git
git pull
更新。- 直接通过URL读取(推荐): 对于Python用户,这是最方便、最推荐的方式。Pandas库可以直接从GitHub的“Raw”文件链接读取CSV数据,无需本地下载或克隆整个仓库,非常适合获取最新数据。
让我们使用第三种方法,通过Python和Pandas来获取最新的时间序列数据。
import pandas as pd
import requests
from io import StringIO
import datetim