最短路图论模板

本文详细介绍了单源最短路径算法,包括Dijkstra算法和SPFA算法的实现细节,探讨了两种算法的时间复杂度,并提供了代码示例。文章还对比了使用邻接表和前向星结构在算法实现上的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单源最短路dij
O((E+N)logN)O((E+N)logN)O((E+N)logN)




const int N=3000;
const int M=71000;
int n,m;
int dis[N];
int vis[N];
struct edge
{
    int to,v;
};
struct qnode
{
    int id;
    int v;
    bool operator <(const qnode &r)const
    {
        return v>r.v;
    }
};
vector<edge> G[N];
void addedge(int u,int v,int w){
    G[u].push_back(edge{v,w});
}
void init(){
    for(int i=0;i<=n;i++) G[i].clear();
}


void Dij(int start)
{
    clr(vis,0);
    clr(dis,INF);
    priority_queue<qnode> q;
    dis[start] = 0;
    q.push(qnode{start,0});
    while(!q.empty()){
        qnode cur=q.top();
        q.pop();
        int u=cur.id;
        if(vis[u]) continue;
        vis[u]=1;
        for(int i=0;i<G[u].size();i++){
            int v=G[u][i].to,w=G[u][i].v;
            if(!vis[v]&&dis[v]>dis[u]+w){
                dis[v]=dis[u]+w;
                q.push(qnode{v,dis[v]});
            }
        }
    }
}
//前向星模板 防止类似poj老oj卡vector 一般不用
const int N=40010;
const int M=150010;
int head[N];
int top;
int n,m;
struct Edge
{
    int val;
    int to;
    int next;
}edge[M];
void addedge(int a,int b,int c)
{
    edge[top].to=b;
    edge[top].val=c;
    edge[top].next=head[a];
    head[a]=top++;
}
void init()
{
    top=0;
    clr(head,-1);
}

int dis[N];
int vis[N];

struct qnode
{
    int id;
    int dis;
    bool operator <(const qnode &r)const
    {
        return dis>r.dis;
    }
};


void Dij(int start)
{
    clr(vis,0);
    clr(dis,INF);
    priority_queue<qnode> q;
    dis[start] = 0;
    q.push(qnode{start,0});
    while(!q.empty()){
        qnode cur=q.top();
        q.pop();
        int u=cur.id;
        if(vis[u]) continue;
        vis[u]=1;
        for(int i=head[u];~i;i=edge[i].next){
            int v=edge[i].to,w=edge[i].val;
            if(!vis[v]&&dis[v] > w+dis[u]){
                dis[v] = w+dis[u];
                q.push(qnode{ v,dis[v]});
            }
        }
    }
}


spfa
O(km)O(km)O(km) k最坏情况下是n


const int N=10010;
const int M=500010;
int n,m;


int dis[N];
struct edge{
    int to;int v;
};
vector<edge> G[N];
int vis[N];
int cnt[N];//每个点的入队次数
void init(){
    for(int i=0;i<=n;i++) G[i].clear();
}
void addedge(int u,int v,int w){
    G[u].push_back(edge{v,w});
}
int spfa(int start){
    clr(vis,0);
    clr(dis,INF);
    queue<int> q;
    dis[start] = 0;
    //vis[start] = 1;
    clr(cnt,0);
    cnt[start] = 1;
    q.push(start);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=0; //不在队列里了
        for(int i=0;i<G[u].size();i++){
            int v=G[u][i].to;
            int cost=G[u][i].v;
            if(dis[v]>dis[u]+cost)
            {
                dis[v]=dis[u]+cost;
                if(!vis[v]){
                    vis[v] = 1;
                    q.push(v);
                    if(++cnt[v]>n) return 0;
                }
            }
        }
    }
    return 1;
}
前向星
const int N=50010;
const int M=50010;

int head[N];
int top;
int n,m;
struct Edge
{
    int val;
    int to;
    int next;
}edge[M];
void addedge(int a,int b,int c)
{
    edge[top].to=b;
    edge[top].val=c;
    edge[top].next=head[a];
    head[a]=top++;
}
void init()
{
    top=0;
    clr(head,-1);
}
int dis[N];
int vis[N];
int cnt[N];//每个点的入队次数

int spfa(int start){
    clr(vis,0);
    clr(dis,INF);
    queue<int> q;
    dis[start] = 0;
    //vis[start] = 1;
    clr(cnt,0);
    cnt[start] = 1;
    q.push(start);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=0; //不在队列里了
        for(int i=head[u];~i;i=edge[i].next){
            int v=edge[i].to;
            int cost=edge[i].val;
            if(dis[v]>dis[u]+cost)
            {
                dis[v]=dis[u]+cost;
                if(!vis[v]){
                    vis[v] = 1;
                    q.push(v);
                    if(++cnt[v]>n) return 0;
                }
            }
        }
    }
    return 1;
}

//读入优化 哎 poj
inline LL read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

内容概要:本文档提供了关于“微型车间生产线的设计与生产数据采集试验研究”的毕业设计复现代码,涵盖从论文结构生成、机械结构设计、PLC控制系统设计、生产数据采集与分析系统、有限元分析、进度管理、文献管理和论文排版系统的完整实现。通过Python代码和API调用,详细展示了各个模块的功能实现和相互协作。例如,利用SolidWorks API设计机械结构,通过PLC控制系统模拟生产流程,使用数据分析工具进行生产数据的采集和异常检测,以及利用进度管理系统规划项目时间表。 适合人群:具有机械工程、自动化控制或计算机编程基础的学生或研究人员,尤其是从事智能制造领域相关工作的人员。 使用场景及目标:①帮助学生或研究人员快速搭建和理解微型车间生产线的设计与实现;②提供完整的代码框架,便于修改和扩展以适应不同的应用场景;③作为教学或科研项目的参考资料,用于学习和研究智能制造技术。 阅读建议:此资源不仅包含详细的代码实现,还涉及多个学科领域的知识,如机械设计、电气控制、数据分析等。因此,在学习过程中,建议读者结合实际操作,逐步理解每个模块的功能和原理,并尝试调整参数以观察不同设置下的系统表现。同时,可以参考提供的文献资料,深入研究相关理论和技术背景。
本次的学生体质健康信息管理网站,按照用户的角色可以分为教师与学生,后台设置管理员角色来对学生的信息进行管理。,设计如下: 1、后台管理系统 后台管理系统主要是为该系统的管理员提供信息管理服务的系统,具体包括的功能模块如下: (1)管理员信息管理 (2)教师信息管理 (3)学生信息管理 (4)健康信息统计(图形化进行健康,亚健康等学生的信息数量统计) 2、教师角色的功能模块设计 教师角色所需要的功能模块主要包括了如下的一些内容: (1)个人资料修改 (2)学生体质健康管理:录入相关数据,包括但不限于身高、体重、肺活量、视力等生理指标以及运动能力、身体成分、骨密度等健康指标,并且设置健康,亚健康状态 (3)学生健康建议:根据体质信息,进行学生健康的建议 (4)健康预警:对健康出问题的学生,进行健康预警 (5)饮食和锻炼情况管理,查看 3、学生角色 学生角色可以通过该信息网站看到个人的基本信息,能够看到教师给与学生的健康建议等,功能模块设计如下: (1)个人资料修改 (2)我的健康建议查看 (3)我的健康预警 (4)饮食和锻炼情况管理,记录平时的饮食和锻炼情况 完整前后端源码,部署后可正常运行! 环境说明 开发语言:Java后端 框架:ssm,mybatis JDK版本:JDK1.8+ 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:eclipse/idea Maven包:Maven3.3+ 部署容器:tomcat7.5+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值