
AI
文章平均质量分 71
今天要来电代码吗
What does not kill me, makes me stronger.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Adding Conditional Control to Text-to-Image Diffusion Models
基于提示词的控制可以满足我们的需求吗?在特定的任务中,我们往往需要很长的时间来训练模。提出了一个神经网络ControlNet,用于控制预训练扩散模型以支持额外的输入条件。trainable copy:针对specific task进行训练。locked copy:保留大模型学习到的能力,增强模型的鲁棒性。,zero convolution用。我们把模型训练好的参数复制一份作为。原创 2023-09-14 23:50:35 · 240 阅读 · 0 评论 -
Diffusion Model
Encoder:最常用的就是text encoder,其实就是NLP了,像gpt、bert等等(encoder对生成的图片质量影响很大)常用的encoder有CLIP(预训练模型),属于一对pair的text和image的向量相近,否则相反。Denoise操作并不是直接生成一张去噪后的图像,而是通过网络预测添加的噪音,然后再减去这个噪音。● 中间产物是小图片:我们就把原始图片缩小,然后组成一对pair丢给Decoder进行训练。是生成的高斯噪声,是我们要加在图片上的。我们训练的目标就是让我们预测的。原创 2023-09-14 23:48:26 · 320 阅读 · 0 评论