目录
一、结构体内存对齐
1.1如何计算?
首先得掌握结构体的对齐规则:
1. 第一个成员在与结构体变量偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。对齐数 = 编译器默认的一个对齐数与该成员大小的较小值。VS中默认的值为8
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整
体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
为什么存在内存对齐?
大部分的参考资料都是如是说的:
1. 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
1.2计算结构体大小
//练习1
struct S1
{
char c1;
int i;
char c2;
};
printf("%d\n", sizeof(struct S1));
//练习2
struct S2
{
char c1;
char c2;
int i;
};
printf("%d\n", sizeof(struct S2));
二、修改默认对齐数
之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。
#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
//输出的结果是什么?
printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));
return 0;
}
通过修改默认对齐数来达到修改结构体大小的目的
三、结构体传参
struct S
{
int data[1000];
int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s); //传结构体
print2(&s); //传地址
return 0;
}
上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。
四、位段
4.1 什么是位段
位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。
struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};
A就是一个位段类型。
4.2 位段的内存分配
1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
//一个例子
struct S
{
char a:3;
char b:4;
char c:5;
char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
4.3 位段的跨平台问题
1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题)。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时是
舍弃剩余的位还是利用,这是不确定的。
总结:
跟结构体相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。
4.4 位段的应用
总结
本文介绍了结构体大小的计算方法,以及介绍了位段的基本概念