线性 H∞ 控制在机器人操纵器中的应用与设计
1. 引言
在工业自动化和机器人技术领域,对机器人操纵器的精确控制至关重要。线性 H∞ 控制作为一种有效的鲁棒控制方法,能够应对系统内部的不确定性和外部干扰,确保机器人操纵器在复杂环境下的稳定运行。本文将详细介绍线性 H∞ 控制的基本原理、设计方法以及实际应用案例。
2. 相关函数与矩阵定义
- 互补灵敏度函数 :互补灵敏度函数 (T(s)) 定义为 (T(s) = I - S(s)),其中 (K(s)) 是鲁棒控制器。
- 性能加权矩阵 (W_e(s)) 和 (W_D(s)) :
- 为了定义 (W_e(s)),需要选择带宽 (\omega_b)、最大峰值 (M_s) 和一个小的正数 (\epsilon > 0)。性能加权矩阵 (W_e(s)) 是一个对角矩阵,其元素 (W_{e,i}(s)) 定义为:
[
W_{e,i}(s) = \frac{s + \omega_b}{M_s(s + \omega_b\epsilon)}
]
其中 (i = 1, \cdots, n)。 - 为了定义 (W_D(s)),需要选择 (K(s)S(s)) 的最大增益 (M_u)、控制器带宽 (\omega_{bc}) 和一个小的正数 (\epsilon_1 > 0)。性能加权矩阵 (W_D(s)) 同样是一个对角矩阵,其元素 (W_{D,i}(s)) 定义为:
[
W_{D,i}(s) = \frac{s + \omeg
- 为了定义 (W_e(s)),需要选择带宽 (\omega_b)、最大峰值 (M_s) 和一个小的正数 (\epsilon > 0)。性能加权矩阵 (W_e(s)) 是一个对角矩阵,其元素 (W_{e,i}(s)) 定义为: