密码学中的安全与归约
1. GHR签名方案的安全性
在密码学中,签名方案的安全性至关重要。这里我们探讨Gennaro - Halevi - Rabin(GHR)签名方案的安全性,它与RSA问题存在一定的关联。
1.1 RSA问题与弱RSA问题
- RSA问题 :已知公开的$N$、$e$、$y$和秘密的$x$、$d$,它们的比特长度均为$n$,满足$y = x^e$且$x = y^d$在$\mathbb{Z}_N^*$中。RSA问题是根据公开数据计算$x$,RSA假设认为该问题难以在多项式时间内解决。
- 弱RSA问题 :输入为RSA模数$N = pq$和$y \in \mathbb{Z}_N^ $,输出为$x \in \mathbb{Z}_N^ $和整数$c \geq 2$,使得$y = x^c$在$\mathbb{Z}_N^*$中。显然,RSA问题的解可以解决弱RSA问题,即弱RSA问题$\leq_p$ RSA问题。
1.2 从弱RSA问题到伪造GHR签名的归约
为了解决弱RSA问题,我们使用一个能伪造具有相同模数$N$的GHR签名的算法$F$。归约算法$A$的步骤如下:
Algorithm 9.8. Reduction A from weak RSA to forging GHR signatures.
Input: RSA modulus N, y ∈ Z×N.
Output: x, c with x