量子计算:离散对数与未来展望
离散对数问题的量子计算基础
在量子计算领域,离散对数问题是一个关键的研究方向。量子电路具备在多项式时间内解决离散对数问题的强大能力。我们考虑一个具有 $d$ 个元素的循环群 $G = \langle g \rangle$ 以及元素 $x \in G$,目标是确定 $dlog_g x$。
为了解决这个问题,我们可以将 $d$ 表示为 $d = 2^e d’$,其中 $e$ 和 $d’$ 为整数,且 $d’$ 为奇数。通过中国剩余定理的计算方法,我们可以分别在阶为 $2^e$ 和 $d’$ 的子群中计算离散对数。由于在阶为 $2^e$ 的子群中计算相对容易(可采用 2 - 进方法),所以问题的核心在于阶为 $d’$ 的子群。为了简化问题,我们可以假设 $d$ 为奇数。
我们假设群 $G$ 的元素被编码为 $n$ 位字符串,满足 $2d \leq q = 2^n < 4d$,并且拥有高效的量子电路用于群 $G$ 中的乘法和幂运算。具体来说,有一个规模为 $O(n^3)$ 的量子电路 $U_G$,用于计算 $(g, x, \ell, j) \to g^{\ell} x^{-j}$ 的酉变换。
离散对数的量子电路算法
下面介绍一个用于解决离散对数问题的量子电路算法,其输入为有限群 $G$ 中阶为奇数 $d = #G$ 的两个元素 $g$ 和 $x$(其中 $x$ 属于由 $g$ 生成的子群),输出可能是 $dlog_g x$、$d$ 的一个真因子或者“失败”。
算法步骤如下:
1. 计算整数 $n$,使得 $2d < q = 2^n < 4d$,并计算 $\omega