计算机代数工具箱:从代数结构到概率空间的深入剖析
1. 代数结构基础
在代数领域,对于特定集合和元素的性质研究是基础且关键的。当 $q$ 为奇素数的幂时,$\sqrt{1} = \pm1$ 在 $\mathbb{Z}_q$ 中成立。这是因为 $\pm1$ 是 $\mathbb{Z}_q^{\times}$ 中阶为 2 的子群,且 $\mathbb{F}_q^{\times}$ 是阶为 $q - 1$ 的循环群,所有满足 $z^2 = 1$ 的 $z$ 都符合这一结论。
对于素数幂的情况,设 $p$ 为奇素数,$e \geq 1$,在 $\mathbb{Z} {p^e}^{\times}$ 中,有以下重要性质:
- $#\mathbb{Z} {p^e}^{\times} = \varphi(p^e) = p^{e - 1}(p - 1)$。
- $#\square_{p^e} = \varphi(p^e)/2$,其中 $\square_{p^e} = {b^2 : b \in \mathbb{Z} {p^e}^{\times}}$。
- 对于任意 $a \in \mathbb{Z} {p^e}^{\times}$,$a \in \square_{p^e} \Leftrightarrow a^{\varphi(p^e)/2} = 1$。
- 任意 $a \in \square_{p^e}$ 有且仅有两个平方根 $b_1$ 和 $b_2$,且 $b_1 + b_2 = 0$。
- 存在概率多项式时间算法,输入 $p^e$ 和 $a \in \mathbb{Z} {p^e}^{\times}$,可判断 $