404Feels
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
17、构建和评估强化学习环境中的转移函数
本文详细探讨了在强化学习环境中构建和评估转移函数的方法。内容包括转移函数的定义及其马尔可夫性质、模型的主要类型(可编程模型、学习模型、混合模型)、构建前的可行性检查、构建指导原则,以及使用KL散度等工具进行模型评估的具体方法。此外,还介绍了如何通过迭代改进、验证集构建和模型优化来提高模型的真实性和可靠性。这些分析为开发能够准确反映现实世界现象的强化学习环境提供了全面的技术支持。原创 2025-07-04 14:33:51 · 40 阅读 · 0 评论 -
16、深度强化学习中的奖励设计
本博客深入探讨了深度强化学习中的奖励设计问题,包括稀疏奖励与密集奖励的特点、奖励数值规模的设计原则、奖励设计的主要挑战以及实用的奖励设计指南。通过分析游戏、机器人技术和工业自动化等实际应用案例,总结了奖励信号优化与调试的方法,并展望了未来奖励设计的发展方向,如自动化奖励设计和多目标奖励设计。旨在为强化学习领域的研究者和实践者提供有价值的参考。原创 2025-07-03 10:47:28 · 50 阅读 · 0 评论 -
15、强化学习中的行动设计
本文探讨了强化学习中行动设计的重要性及其对代理与环境交互的影响。文章从行动的定义和表示入手,结合日常生活和模拟环境中的示例,分析了行动空间的设计方法、复杂性管理以及技术实现细节。同时,还讨论了行动设计中的挑战及优化策略,并从日常物品中获取设计灵感,为构建高效灵活的强化学习系统提供了全面指导。原创 2025-07-02 14:15:56 · 25 阅读 · 0 评论 -
14、状态设计在深度强化学习中的重要性
本文探讨了状态设计在深度强化学习中的关键作用,详细介绍了状态的概念、表示方式以及设计时需要考虑的核心因素,如完整性、复杂性和信息损失。文章还提供了多种状态预处理技术,包括数值标准化、图像缩放与灰度化、帧跳过和堆叠,并通过实际案例(如推车杆环境和雅达利游戏)展示了如何高效地构建状态表示,以提升算法的学习效率和性能。原创 2025-07-01 14:48:35 · 29 阅读 · 0 评论 -
13、硬件优化在深度强化学习中的重要性
本文深入探讨了深度强化学习中的硬件优化问题,涵盖了计算机组成、GPU与CPU的区别、数据类型选择、内存管理技巧以及实验环境配置建议。通过合理选择硬件和优化资源使用,帮助提升深度强化学习实验的效率。原创 2025-06-30 09:29:02 · 28 阅读 · 0 评论 -
12、深度强化学习中的神经网络设计与优化
本文全面探讨了深度强化学习中的神经网络设计与优化,涵盖了多层感知机(MLP)、卷积神经网络(CNN)和循环神经网络(RNN)的结构特点及应用场景。文章还详细介绍了如何根据环境特性选择合适的网络架构,并讨论了标准化API的设计、训练过程的优化方法以及硬件资源的选择策略。通过实际案例分析,展示了不同神经网络在复杂任务中的应用效果,为读者提供了从理论到实践的完整指导。原创 2025-06-29 15:16:07 · 26 阅读 · 0 评论 -
11、使用SLM实验室进行深度强化学习实验
本文详细介绍了如何使用SLM实验室进行深度强化学习实验。SLM实验室是一个基于PyTorch的模块化框架,支持多种DRL算法,如DQN、A2C、PPO等,并提供了开发、训练、搜索和享受四种主要模式。文章涵盖了安装配置、算法实现、规格文件编写、实验运行及结果分析等内容,旨在帮助研究人员和学生高效开展深度强化学习研究。原创 2025-06-28 09:10:35 · 28 阅读 · 0 评论 -
10、让深度强化学习工作
本文深入探讨了深度强化学习(DRL)的实现与优化方法,涵盖了工程实践、调试技巧、环境预处理、超参数配置以及奖励设计等内容。通过具体示例和实验数据,帮助读者更好地理解和应用DRL算法,提升其在不同环境中的性能表现。原创 2025-06-27 13:12:50 · 23 阅读 · 0 评论 -
9、深度强化学习算法总结
本博客详细总结了深度强化学习的主要算法及其分类,包括同策略和异策略算法的区别、适用的动作空间类型以及学习的函数类型。重点介绍了双DQN+PER和PPO等高效稳定算法,并提供了REINFORCE和PPO的示例代码及实践案例。通过对比表格、流程图和应用场景分析,帮助读者更好地选择和应用这些算法解决实际问题。原创 2025-06-26 09:32:01 · 27 阅读 · 0 评论 -
8、并行化方法在深度强化学习中的应用
本文探讨了并行化方法在深度强化学习中的应用,重点分析了同步与异步两种主要并行化策略的流程、优缺点及适用场景。文章还介绍了Hogwild!无锁机制以及A3C算法的实际应用,并讨论了并行化方法的选择依据、优化技术及面临的挑战。通过合理选择并行化策略,可以有效提升训练效率和模型性能。原创 2025-06-25 16:26:59 · 32 阅读 · 0 评论 -
7、深度强化学习中的近端策略优化(PPO)
本文介绍了深度强化学习中的近端策略优化(PPO)算法,重点分析了其如何通过替代目标和剪切技术解决策略梯度方法中的性能崩溃问题。文章详细探讨了参数空间与策略空间的关系、KL散度约束的原理,并提供了PPO算法的具体实现方式及其在不同环境中的应用实例,如雅达利乒乓球环境和双足步行者环境。此外,还展示了PPO算法在多个实验中的表现,证明了其稳定性和广泛适用性。原创 2025-06-24 16:24:23 · 29 阅读 · 0 评论 -
6、优势演员-评论家(A2C)算法详解
本文详细介绍了优势演员-评论家(A2C)算法的原理、结构和训练方法。A2C算法结合了策略梯度和价值函数的优势,在深度强化学习中表现出高效的学习能力。文章涵盖执行者与评论者的功能、强化信号生成、网络架构设计、训练过程中的优势估计方法,以及实验结果和优化技巧。此外,还展示了A2C在游戏环境、机器人控制、自动驾驶和工业自动化等领域的应用潜力。原创 2025-06-23 09:36:28 · 20 阅读 · 0 评论 -
5、深度Q网络的三大改进:稳定性和效率的飞跃
本文介绍了深度Q网络(DQN)的三大改进技术:目标网络、双DQN和优先级经验回放(PER),旨在提升DQN在训练过程中的稳定性和样本效率。目标网络通过提供固定的目标来解决训练不稳定的问题;双DQN通过分离动作选择和Q值评估,减少Q值的高估;而PER则根据TD误差对重要经验进行优先采样,提高了学习效率。实验结果表明,这些改进显著提升了DQN在雅达利游戏任务中的性能表现,为复杂任务的求解提供了更稳固的基础。原创 2025-06-22 14:11:36 · 20 阅读 · 0 评论 -
4、深度Q网络(DQN)详解与实现
本文详细介绍了深度Q网络(DQN)的基本概念、工作原理及其优化技术。DQN是一种基于价值的时序差分算法,通过近似Q-函数来选择动作,适用于离散动作空间的环境。文章涵盖了DQN的核心机制,如经验回放记忆体、玻尔兹曼策略和目标网络,并讨论了其改进版本如双DQN和优先级经验回放的应用。此外,还展示了DQN在经典环境如推车杆和雅达利游戏中的实际应用效果,验证了其在解决复杂问题方面的卓越表现。原创 2025-06-21 16:01:02 · 18 阅读 · 0 评论 -
3、深入理解SARSA算法:从理论到实践
本文深入探讨了SARSA算法的核心思想、实现细节及其应用。SARSA是一种基于价值的强化学习算法,通过学习Q-函数来评估状态-动作对的价值,并使用这些评估结果选择动作。文章介绍了SARSA的基本原理,包括时间差分(TD)学习和探索与利用的平衡,并详细讨论了其实现方法以及在不同场景中的应用。实验结果显示,适当调整超参数可以显著提高SARSA的性能,使其在游戏AI、机器人控制和自动驾驶等领域表现出色。原创 2025-06-20 11:44:50 · 22 阅读 · 0 评论 -
2、探索深度强化学习:REINFORCE算法详解
本文深入解析了深度强化学习中的REINFORCE算法,介绍了其背景、核心思想、关键组件及实现方法。文章通过CartPole-v0环境展示了该算法的具体应用,并提供了Python代码示例。同时讨论了算法的局限性以及使用基线和奖励规范化等策略进行优化的方法,帮助读者全面理解REINFORCE算法的原理与实践。原创 2025-06-19 15:34:04 · 44 阅读 · 0 评论 -
1、强化学习入门
本博客全面介绍了强化学习的基本概念和核心原理,包括其与监督学习的区别、马尔可夫决策过程(MDP)、目标函数、深度神经网络在强化学习中的应用等内容。此外,还详细讨论了深度强化学习的主要算法分类以及实践中的常见挑战,如稀疏奖励、模型偏差和安全性问题。通过对比监督学习,帮助读者更好地理解强化学习的独特优势和适用场景。原创 2025-06-18 14:04:24 · 41 阅读 · 0 评论