理论:
前馈神经网络的问题
卷积的作用和卷积的运算
https://www.cnblogs.com/shine-lee/p/9932226.html
函数角度:
从这个角度看,多层卷积是在进行逐层映射,整体构成一个复杂函数,训练过程是在学习每个局部映射所需的权重,训练过程可以看成是函数拟合的过程。
模板匹配角度:
即认为卷积核定义了某种模式,卷积(相关)运算是在计算每个位置与该模式的相似程度,或者说每个位置具有该模式的分量有多少,当前位置与该模式越像,响应越强。
一维卷积:一维卷积经常用在信号处理中,用于计算信号的延迟累积。
二维卷积:卷积也经常用在图像处理中。用于图像特征的提取。
卷积计算:
一维卷积:卷积核的移动,乘积,求和,即从原本的信号中加权平均求和得到新的信号序列。
二维卷积:卷积核的移动,乘积,求和,即对图像的每个像素的邻域(邻域大小就是核的大小)加权求和得到该像素点的输出值。最终得到新的图像。
卷积的变种
在卷积的标准定义基础上,还可以引入滤波器的滑动步长和零填充来增加
卷积的多样性,可以更灵活地进行特征抽取。
滤波器的步长(Stride)是指滤波器在滑动时的时间间隔
零填充(Zero Padding)是在输入向量两端进行补零
转置卷积(反卷积)
PyTorch: torch.nn.ConvTranspose2d()
转置卷积常常用于CNN中对特征图进行上采样,比如语义分割和超分辨率任务中。之所以叫转置卷积是因为,它其实是把我们平时所用普通卷积