深度学习 学习笔记 AlexNet优化

本文介绍了AlexNet深度学习模型的实现过程,包括三个卷积阶段和一个全连接层阶段,详细展示了各层参数配置。作者提到dropout层通常用于全连接层以防止过拟合,个人经验中设置在0.1~0.3之间为宜。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://blog.csdn.net/u011268787/article/details/84926246

https://blog.csdn.net/u011268787/article/details/85043511

class AlextNet(nn.Module):
    def __init__(self, in_channel, n_class):
        super(AlextNet, self).__init__()
        # 第一阶段
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, 96, kernel_size=11, stride=4),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2)
        )
        # 第二阶段
        self.conv2 = nn.Sequential(
            nn.Conv2d(96, 256, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2)
        )
        # 第三阶段
        self.conv3 = nn.Sequential(
            nn.Conv2d(256, 384, kernel_size=3, padding=1),
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值