机器人运动学与相关概念解析
1. 运动学基础概念
运动学主要研究物体在空间中的运动,即物体位姿随时间的变化,而不涉及力和扭矩如何导致这种运动。以下是一些关键概念:
- 轨迹 :带有时间信息的路径(一系列位姿)。
- 速度 :描述物体位姿的变化率。
- 加速度 :描述物体速度的变化率。
- 位姿 :同时描述位置和方向。空间速度(和空间加速度)由线速度(加速度)和角速度(加速度)组成。
导数是函数在每一点的瞬时变化率,直观上,函数在某一点的导数是该点的切线。求导的过程称为微分,高阶导数是导数的导数,例如加速度是位置的二阶导数,速度是位置的一阶导数。积分可以看作是导数的逆运算,即反导数,它将变量在一个区间内的所有瞬时变化累积为变量的最终总体变化,直观上,积分提供了函数曲线下的面积,计算积分的过程称为积分。不定积分是导数为另一个函数的函数,定积分计算一个值。
理解位置、速度、加速度和急动度相对于时间导数和时间积分的关系在机器人技术中至关重要。
2. 任务空间与关节空间
- 任务空间(笛卡尔空间) :用笛卡尔坐标中的位姿(及其导数)来描述机器人的配置。
- 关节空间 :用广义坐标中的关节位置(及其导数)来描述机器人的配置。
3. 正运动学与逆运动学
- 正运动学(FK)