x8y9z0
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
16、分布式存储系统修复时间与虚拟PC型瘦客户端系统开发评估
本文研究了分布式存储系统的修复时间,并对虚拟PC型瘦客户端系统的开发与运营进行了评估。通过实验分析,验证了模拟器结果与实际结果的接近性,并探讨了在大规模部署环境下虚拟PC系统的解决方案。文中还提出了三种负载均衡方法,并分析了它们的适用场景。最后,总结了两种系统的协同关系及其未来发展方向。原创 2025-07-15 10:05:23 · 15 阅读 · 0 评论 -
14、云端多数据存储:挑战与解决方案
本文探讨了在云计算环境中使用多个数据存储所面临的挑战与解决方案。文章介绍了模块化云存储系统Cloudy的特性,分析了集成数据存储透明访问的实现方法,并讨论了一致性、可扩展性和弹性之间的关系。此外,文章还涉及分布式存储系统的修复时间问题,特别是纳米数据中心(NaDa)系统的设计与优化。通过数学分析和实验验证,提出了一种新的修复时间分析框架,并探讨了再生码对重建效率的影响。最后,文章总结了现有研究的不足,并展望了未来的研究方向,旨在提升数据密集型应用在PaaS环境下的性能与可靠性。原创 2025-07-13 12:50:50 · 28 阅读 · 0 评论 -
13、云端多数据存储:挑战与解决方案
本文探讨了在云计算的PaaS层面支持多数据存储的挑战与解决方案。分析了单一数据存储、多数据存储但单应用单存储、以及多数据存储且单应用多存储三种场景下的需求与问题,并提出了包括CAMP、CDMI、中立API、模型驱动架构、数据集成技术以及分布式事务管理等解决方案。文章还讨论了数据存储选择、迁移、访问、集成以及一致性之间的关系,旨在为云端高效、可靠的数据管理提供指导。原创 2025-07-12 10:05:22 · 26 阅读 · 0 评论 -
12、云端部署多接口 RESTful 应用的全面解析
本文全面解析了10Green应用的云端部署与多接口RESTful架构的设计与实现。10Green是一款通过污染物水平影响评分的应用,支持Web和移动平台,提供空气质量数据和地图服务。文章详细介绍了应用服务器的REST架构设计、API和瓦片映射服务(TMS)的实现、移动应用的演进过程,以及基于Amazon Web Services(AWS)的云部署策略。通过对比不同的数据库访问方案和服务器实例配置,结合实验结果分析了自动缩放在高负载场景下的性能优势。最终总结了在设计、开发和云部署方面的最佳实践和建议,为构建高原创 2025-07-11 13:44:46 · 19 阅读 · 0 评论 -
11、分布式 RDF 查询与云应用部署的优化策略
本博客探讨了在分布式RDF系统中优化查询处理的方法,包括Query Chain(QC)算法和3nuts局部性特征的应用。同时分析了不同网络结构对查询性能的影响,并提出通过捷径技术减少路由跳数的策略。此外,还介绍了在云环境下设计和部署RESTful应用的实践经验,以提高系统的可扩展性和成本效益。原创 2025-07-10 09:43:33 · 14 阅读 · 0 评论 -
10、分布式RDF查询中的网络结构改进与性能优化
本文探讨了分布式RDF系统中不同网络结构和索引方案对查询性能与负载平衡的影响。通过对比基于DHT的Chord和基于搜索树的3nuts网络,结合3种索引与6种索引方案的实验分析,发现基于搜索树的网络在范围查询和数据局部性方面具有显著优势,而新的6索引方案能够有效改善负载不平衡问题。研究结果为实际应用中选择合适的网络结构和索引策略提供了参考,并为未来进一步优化分布式RDF系统的性能指明了方向。原创 2025-07-09 16:03:18 · 16 阅读 · 0 评论 -
9、基于Map - Reduce的链接数据查询算法详解
本文详细介绍了一种基于Map-Reduce框架的大规模链接数据查询算法。通过将数据图和查询进行合理分解,并利用分布式计算能力,该算法能够高效处理大规模的RDF或知识图谱数据。文中阐述了关键概念如部分映射连接、数据图分区以及有用部分嵌入等,并详细描述了预处理、局部计算与结果合并等算法步骤。实验结果显示,该方法在不同规模的数据集上均具有良好的性能和可扩展性。原创 2025-07-08 15:39:00 · 12 阅读 · 0 评论 -
8、分布式RDF数据发布/订阅系统与Map - Reduce查询算法解析
本文详细解析了分布式RDF数据发布/订阅系统中的CSMA与OSMA算法,对比了其在吞吐量、匹配步骤和带宽消耗等方面的特性。同时介绍了一种基于Map-Reduce模型的高效查询算法,适用于处理大规模链接数据。通过实验分析,展示了OSMA在可扩展性和吞吐量方面的优势,以及Map-Reduce在分布式查询中的灵活性和性能。文章还探讨了不同算法的应用场景,并对未来优化方向进行了展望。原创 2025-07-07 11:51:46 · 15 阅读 · 0 评论 -
7、用于RDF数据的分布式发布/订阅系统
本文介绍了一种用于RDF数据的分布式发布/订阅系统,旨在解决集中式和传统查询/响应模型在处理复杂查询和数据流方面的局限性。文章提出了基于内容的订阅模型,使用SPARQL子集表达订阅,并基于四维CAN覆盖网络实现高效的数据索引和路由。系统设计支持链式语义匹配算法(CSMA)和一步语义匹配算法(OSMA),分别优化不同场景下的性能。实验结果显示,CSMA适用于低频事件和带宽敏感场景,而OSMA在高频事件和低延迟需求下表现更优。系统具备匹配交付、无假阳性和因果顺序等属性,为语义网环境下的实时信息分发提供了有效支持原创 2025-07-06 11:21:29 · 12 阅读 · 0 评论 -
6、云环境下的数据处理与事务管理策略
本文探讨了云环境下数据处理与事务管理的三项关键技术。首先,介绍MR-Part技术,通过智能分区优化MapReduce作业中的数据传输开销;其次,提出基于遗传算法的增量水平分区策略ISGA∗,在动态查询负载下平衡查询性能和维护成本;最后,分析FLACS协议,在分布式环境中实现跨分区的完全一致事务处理。通过实验评估验证了这些方法的有效性,并对比了不同方案在一致性、分区方式、事务支持等方面的差异。文章为大数据处理、数据仓库优化及高一致性要求的应用提供了实践指导和技术选型建议。原创 2025-07-05 11:01:27 · 12 阅读 · 0 评论 -
5、云环境下可扩展且完全一致的事务处理
本文介绍了一种名为 FLACS(Fault-tolerant and Lightweight Atomic Commitment System)的协议,旨在实现云环境下可扩展且完全一致的事务处理。通过引入观察者机制、增量排序和验证层次结构等关键技术,该协议优化了传统事务处理中的验证延迟问题,提高了性能与可扩展性。同时,文章分析了其在不同负载场景下的实验表现,并探讨了系统部署、事务类型优化及容错策略等方面的应用建议。原创 2025-07-04 14:59:35 · 23 阅读 · 0 评论 -
4、数据仓库水平模式选择与云环境下事务管理
本文探讨了数据仓库中的水平模式选择与云环境下事务管理的挑战及解决方案。针对数据仓库,提出了基于遗传算法的增量选择方法(ISGA 和改进的 ISGA*),在查询性能与维护成本之间取得了良好平衡;对于云环境事务管理,提出 FLACS 方法,通过分层验证程序实现低延迟、可扩展且完全一致的数据管理。文章结合实验评估和实际应用建议,为不同场景下的技术选型提供了理论支持与实践指导。原创 2025-07-03 11:05:33 · 12 阅读 · 0 评论 -
3、数据仓库水平模式选择的增量算法:动态案例
本文探讨了数据仓库中水平数据分区模式的选择问题,并提出了一种基于遗传算法的增量方法以应对动态变化的工作负载。文章首先介绍了水平数据分区的基本概念及其在优化星型连接查询中的重要性,随后详细分析了静态和增量碎片化模式选择的方法。增量方法包括朴素增量选择(NIS)、基于遗传算法的增量选择(ISGA)以及改进的ISGA* 方法。通过实验评估表明,考虑当前碎片化情况的ISGA* 方法在查询性能和适应性方面表现最佳。该研究为数据仓库物理设计提供了高效的动态优化方案。原创 2025-07-02 13:25:45 · 25 阅读 · 0 评论 -
2、优化MapReduce数据分区以减少数据传输
本文介绍了一种名为MR-Part的创新技术,用于优化MapReduce模型中的Shuffle阶段,以显著减少数据传输量并提高响应时间。通过利用超图对工作负载进行建模,并结合智能的数据重新分区和Reduce任务的本地感知调度,MR-Part在不同查询类型和集群规模下均表现出色,特别是在网络带宽受限的情况下优势明显。实验结果显示,该方法能够将传输数据的比例从80%降低到10%以下,同时在低带宽环境中比原生Hadoop快约30%。未来的工作包括探索并行重新分区、自适应调度策略以及与其他优化技术的结合。原创 2025-07-01 09:09:54 · 23 阅读 · 0 评论 -
1、优化MapReduce数据传输:MR - Part技术揭秘
本文介绍了MR-Part技术,旨在优化MapReduce框架中Shuffle阶段的数据传输问题。通过工作负载特征化、超图构建、重新分区和智能调度等步骤,MR-Part有效提高了数据局部性,减少了网络传输开销。实验结果表明,该技术在网络带宽受限的情况下显著提升了作业执行效率。文章还详细解析了其技术实现流程及未来应用前景。原创 2025-06-30 13:09:15 · 17 阅读 · 0 评论