本文将详细介绍三种常见的监督分类方法:最小距离分类器、最大似然分类器和支持向量机(SVM)。每种方法都会包括原理、数学公式、具体例子和Python代码(含原图及分类结果可视化)。
1. 最小距离分类器(Minimum Distance Classifier)
原理
最小距离分类器是一种基于距离度量的简单分类方法。它将每个样本与各类别的均值(中心)计算欧氏距离,样本分配给距离最近的类别。适用于各类别内部方差相等且协方差为零的情况。
数学公式
对于样本 ( x ) 和第 ( i ) 类均值:
di(x)=(x−μi)T(x−μi)
d_i(x) = \sqrt{(x-\mu_i)^T(x-\mu_i)}
di(x)=(x−μi)T(x−μi)
样本 ( x ) 属于距离最近的类别 i,即:
i∗=argminidi(x)
i^* = \arg\min_{i} d_i(x)
i∗=argimindi(x)
Python代码示例
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.decomposition import PCA
# 加载数据,用的是乳腺癌数据集
data = load_breast_cancer()
X = data.data
y = data.target
# 用PCA降维到二维,便于可视化
pca = PCA(n_components=2)
X2 = pca.fit_transform(X)
# 计算每一类的均值
mu0 = X2[y == 0].mean(axis=0)
mu1 = X2[y == 1].mean(axis=0)
def min_distance_classifier(X, mus):
dists = np.array([np.linalg.norm(X - mu, axis=1) for mu in mus])
return np.argmin(dists, axis=0)
pred = min_distance_classifier(X2, [mu0, mu1])
# 可视化
fig, axes = plt.subplots(1, 2, figsize=(11, 4))
axes[0].scatter(X2[:, 0], X2[:, 1], c=y, cmap='bwr', label='True')
axes[0].set_title('Original')
axes[0].set_xlabel('PC1')
axes[0].set_ylabel('PC2')
axes[1].scatter(X2[:, 0], X2[:, 1], c=pred, cmap='bwr')
# axes[1].scatter([mu0[0], mu1[0]], [mu0[1], mu1[1]], c=['red', 'blue'], marker='*', s=200, label='Mean')
axes[1].set_title('Minimum Distance Classification Result')
axes[1].set_xlabel('PC1')
axes[1].set_ylabel('PC2')
axes[1].legend()
plt.tight_layout()
plt.show()
结果:
2. 最大似然分类器(Maximum Likelihood Classifier)
原理
最大似然分类器基于贝叶斯判别原理。对于每个样本,计算其属于各类别的概率密度(通常假设高斯分布),并结合先验概率,选取后验概率最大的类别。
数学公式
后验概率:
p(ωi∣x)∝p(x∣ωi)P(ωi)
p(\omega_i|x) \propto p(x|\omega_i)P(\omega_i)
p(ωi∣x)∝p(x∣ωi)P(ωi)
如果各类别先验相同,则只需比较似然项 ( p(x|\omega_i) )。常见情况下,假设各类别为高斯分布:
p(x∣ωi)=1(2π)d/2∣Σi∣1/2exp(−12(x−μi)TΣi−1(x−μi))
p(x|\omega_i) = \frac{1}{(2\pi)^{d/2}|\Sigma_i|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i)\right)
p(x∣ωi)=(2π)d/2∣Σi∣1/21exp(−21(x−μi)TΣi−1(x−μi))
Python代码示例
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.decomposition import PCA
from scipy.stats import multivariate_normal
data = load_breast_cancer()
X = data.data
y = data.target
# PCA降到二维
pca = PCA(n_components=2)
X2 = pca.fit_transform(X)
# 估计高斯分布参数
mu0, cov0 = X2[y == 0].mean(axis=0), np.cov(X2[y == 0], rowvar=False)
mu1, cov1 = X2[y == 1].mean(axis=0), np.cov(X2[y == 1], rowvar=False)
def ml_classifier(X, params):
probs = [multivariate_normal(mean=mu, cov=cov).pdf(X) for mu, cov in params]
return np.argmax(np.stack(probs, axis=1), axis=1)
pred = ml_classifier(X2, [(mu0, cov0), (mu1, cov1)])
fig, axes = plt.subplots(1, 2, figsize=(11, 4))
axes[0].scatter(X2[:, 0], X2[:, 1], c=y, cmap='bwr')
axes[0].set_title('Original Data (PCA Projection)')
axes[0].set_xlabel('PC1')
axes[0].set_ylabel('PC2')
axes[1].scatter(X2[:, 0], X2[:, 1], c=pred, cmap='bwr')
axes[1].set_title('Maximum Likelihood Classification Result')
axes[1].set_xlabel('PC1')
axes[1].set_ylabel('PC2')
plt.tight_layout()
plt.show()
结果:
3. 支持向量机(SVM)
原理
SVM是一种判别式模型,通过寻找一个最优超平面,将不同类别样本分开,并最大化两类之间的间隔。对于线性可分情况,目标是:
minw,b12∥w∥2
\min_{w,b} \frac{1}{2} \|w\|^2
w,bmin21∥w∥2
约束条件:
yi(wTxi+b)≥1
y_i(w^T x_i + b) \geq 1
yi(wTxi+b)≥1
对于非线性情况,可通过核函数映射到高维空间。
Python代码示例
用scikit-learn的SVM对两类数据进行分类并可视化决策边界。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.decomposition import PCA
from sklearn.svm import SVC
data = load_breast_cancer()
X = data.data
y = data.target
# PCA降维
pca = PCA(n_components=2)
X2 = pca.fit_transform(X)
clf = SVC(kernel='linear')
clf.fit(X2, y)
pred = clf.predict(X2)
def plot_decision_boundary(clf, X, y, ax):
x_min, x_max = X[:, 0].min()-1, X[:, 0].max()+1
y_min, y_max = X[:, 1].min()-1, X[:, 1].max()+1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 300), np.linspace(y_min, y_max, 300))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, alpha=0.3, cmap='bwr')
ax.scatter(X[:, 0], X[:, 1], c=y, cmap='bwr', edgecolors='k')
ax.set_title('SVM Classification Result')
ax.set_xlabel('PC1')
ax.set_ylabel('PC2')
fig, axes = plt.subplots(1, 2, figsize=(11, 4))
axes[0].scatter(X2[:, 0], X2[:, 1], c=y, cmap='bwr')
axes[0].set_title('Original Data (PCA Projection)')
axes[0].set_xlabel('PC1')
axes[0].set_ylabel('PC2')
plot_decision_boundary(clf, X2, y, axes[1])
plt.tight_layout()
plt.show()
结果: