用 “5W1H” 法构建提示词:让大模型更懂你的需求
在和大模型打交道时,很多人都会遇到这样的问题:明明说了自己的需求,可模型输出的结果总是差强人意。这往往不是因为模型能力不够,而是提示词没有把需求说清楚。“5W1H” 法是一种经典的问题分析和信息梳理方法,把它用到提示词构建上,能让需求更清晰、更全面,让大模型更容易理解。这篇文章就详细讲讲如何用 “5W1H” 法构建提示词。
1. 什么是 “5W1H” 法
1.1 基本概念
“5W1H” 法是指从 Who(谁)、What(什么)、When(何时)、Where(何地)、Why(为什么)、How(如何)这六个方面去梳理信息、分析问题的方法。它起源于新闻写作,后来被广泛应用到管理、策划、沟通等多个领域,能帮助人们全面、有条理地思考和表达。
1.2 与提示词构建的关联
在构建提示词时,核心目标是把用户的需求准确、完整地传递给大模型。“5W1H” 法的六个要素,刚好对应了需求中可能涉及的关键信息。用这六个要素来组织提示词,能避免信息遗漏、逻辑混乱,让大模型快速抓住核心需求。
2. “Who”:明确参与对象,让模型找准定位
2.1 确定主体是谁
2.1.1 用户自身
在提示词中明确 “谁” 是需求的发出者或相关主体,能让模型更好地贴合场景。比如,“作为一名学生,我需要一份期末复习计划”,这里的 “学生” 就是主体,模型会根据学生的身份来制定计划。
2.1.2 模型角色
很多时候,需要让大模型扮演特定角色来完成任务。用 “Who” 明确模型的角色,能让输出更符合角色特点。例如,“假设你是一名厨师,请告诉我鱼香肉丝的做法”,模型会以厨师的专业视角来回答。
2.2 实例说明
2.2.1 场景:写一封求职信
提示词:“作为一名即将毕业的计算机专业大学生,我想申请软件开发岗位,请帮我写一封求职信。”
分析:这里明确了用户是 “即将毕业的计算机专业大学生”,申请的岗位是 “软件开发岗位”,模型会结合这些身份信息,在求职信中突出相关专业技能和求职意向。
2.2.2 场景:分析市场问题
提示词:“你作为一名市场分析师,分析一下当前奶茶行业的竞争状况。”
分析:指定模型为 “市场分析师”,模型会运用市场分析的专业知识和视角,从竞争格局、品牌优势等方面进行分析,输出更具专业性的内容。
3. “What”:聚焦核心任务,让模型知道做什么
3.1 明确具体任务
3.1.1 任务类型
“What” 首先要明确让模型做什么类型的任务,是写文章、翻译文本、解答问题,还是生成代码等。比如,“请翻译下面这段话”“帮我写一个 Python 函数”。
3.1.2 任务内容
除了类型,还要明确任务的具体内容。例如,“写一篇关于环保的短文” 比 “写一篇短文” 更具体;“解答为什么天空是蓝色的” 比 “解答这个问题” 更清晰。
3.2 避免模糊表述
3.2.1 常见问题
如果 “What” 部分表述模糊,模型会难以把握任务重点。比如,“处理一下这个文件”,“处理” 可以是翻译、总结、排版等多种含义,模型可能会给出不符合预期的结果。
3.2.2 解决方法
用具体的动词和名词明确任务。比如,把 “处理一下这个文件” 改为 “总结这个文件的主要内容” 或 “把这个文件翻译成英文”,让模型一目了然。
3.3 实例说明
3.3.1 场景:处理文本
模糊提示词:“弄一下这段文字。”
优化提示词:“把这段文字改写成通俗易懂的口语化表达。”
分析:优化后的提示词明确了 “What” 是 “改写成通俗易懂的口语化表达”,模型能准确进行风格转换。
3.3.2 场景:解决数学问题
提示词:“计算一下半径为 5 厘米的圆的面积和周长。”
分析:明确任务是 “计算圆的面积和周长”,并给出了半径信息,模型能直接运用圆的面积和周长公式进行计算,输出准确结果。
4. “When”:明确时间要素,让模型贴合时间场景
4.1 时间点与时间段
4.1.1 具体时间点
在提示词中明确具体的时间点,能让模型的输出符合该时间点的特点。比如,“写一份 2024 年春节的祝福短信”,模型会结合春节的时间和节日氛围来创作。
4.1.2 时间范围
对于需要在一定时间范围内完成的任务,明确时间段很重要。例如,“制定一份未来一周的健身计划”,模型会根据一周的时间长度,合理安排每天的健身内容。
4.2 时间相关的背景信息
有些任务需要结合特定时间的背景信息,“When” 能帮助模型把握这些信息。比如,“分析 2008 年金融危机对中国出口的影响”,模型会聚焦 2008 年这个时间点的经济背景进行分析。
4.3 实例说明
4.3.1 场景:制定计划
提示词:“请为我制定一份 2025 年暑假的学习计划,时间从 7 月 10 日到 8 月 30 日。”
分析:明确了时间是 “2025 年暑假” 以及具体的时间段,模型会根据暑假的时长和学生的学习特点,合理分配学习任务。
4.3.2 场景:写新闻报道
提示词:“以 2024 年奥运会开幕式为主题,写一篇新闻报道。”
分析:时间要素 “2024 年奥运会开幕式” 是新闻的核心,模型会围绕该时间点的事件进行报道,突出开幕式的亮点和意义。
5. “Where”:指明地点场景,让模型结合环境特点
5.1 具体地点
5.1.1 物理地点
明确具体的物理地点,能让模型的输出更贴合该地点的特点。比如,“推荐一下上海适合家庭游玩的景点”,模型会结合上海的景点分布和家庭游玩的需求进行推荐。
5.1.2 虚拟场景中的 “地点”
在虚拟场景中,“Where” 可以指讨论的范围或领域。例如,“在计算机网络领域,解释一下 IP 地址的作用”,模型会限定在该领域内进行解释。
5.2 地点相关的背景
地点往往关联着当地的文化、习俗、环境等背景信息。“Where” 能引导模型考虑这些因素。比如,“写一篇关于在东北过冬的注意事项”,模型会结合东北寒冷的气候特点给出建议。
5.3 实例说明
5.3.1 场景:旅游攻略
提示词:“帮我写一份去成都旅游的攻略,包括必去的景点和特色美食。”
分析:“成都” 这个地点明确后,模型会推荐都江堰、宽窄巷子等成都特色景点,以及火锅、夫妻肺片等当地美食,贴合地点特点。
5.3.2 场景:职场建议
提示词:“在互联网公司的职场中,新人如何快速融入团队?”
分析:“互联网公司” 这个职场地点的特点是节奏快、团队协作频繁,模型会针对这些特点给出如主动沟通、参与团队活动等建议。
6. “Why”:阐述原因目的,让模型理解需求动机
6.1 说明任务的目的
6.1.1 帮助模型把握方向
明确 “Why”,即做这件事的目的,能让模型的输出更贴合需求的深层动机。比如,“为了提高孩子的阅读兴趣,推荐一些适合小学生的课外书”,模型会推荐趣味性强、难度适中的书籍。
6.1.2 避免偏离核心目标
如果不说明目的,模型可能只停留在完成表面任务。例如,只说 “推荐适合小学生的课外书”,模型可能推荐一些知识性强但趣味性不足的书籍,而忽略 “提高阅读兴趣” 这个目的。
6.2 传递背后的原因
有些任务的要求需要结合原因来理解。比如,“因为要参加英语演讲比赛,帮我写一篇 3 分钟的演讲稿,主题是我的家乡”,模型会考虑到演讲比赛的场合,让演讲稿更具感染力和口语化特点。
6.3 实例说明
6.3.1 场景:选购礼物
提示词:“为了给朋友庆祝生日,他喜欢打篮球,帮我推荐一份合适的礼物。”
分析:“庆祝生日” 是目的,“喜欢打篮球” 是爱好,模型会结合这两点,推荐篮球、球星周边等礼物,更符合需求。
6.3.2 场景:写方案
提示词:“为了减少公司办公经费开支,写一份节约办公用品的方案。”
分析:明确了方案的目的是 “减少办公经费开支”,模型会从办公用品采购、使用规范等方面提出具体的节约措施,针对性更强。
7. “How”:说明方式方法,让模型按要求执行
7.1 输出格式要求
7.1.1 结构格式
“How” 可以明确模型输出的结构格式,比如列表、表格、总分总结构等。例如,“用列表形式列出每天的学习任务”“以表格形式对比苹果和华为手机的优缺点”。
7.1.2 语言风格
要求输出的语言风格也是 “How” 的一部分,比如 “用幽默的语气写一段介绍宠物的文字”“用专业的术语解释这个物理现象”。
7.2 执行步骤要求
对于复杂任务,“How” 可以说明执行的步骤或方法。比如,“写一份蛋糕的制作教程,按照准备材料、搅拌面糊、烘烤、装饰的步骤来写”,模型会按指定步骤组织内容。
7.3 实例说明
7.3.1 场景:总结内容
提示词:“总结这篇文章的主要观点,用分点的形式,每点不超过 20 字。”
分析:“用分点的形式”“每点不超过 20 字” 是对输出格式的要求,模型会按此要求提炼观点,输出简洁明了的总结。
7.3.2 场景:写故事
提示词:“写一个童话故事,情节要有起伏,结尾要温馨,语言要简单易懂。”
分析:“情节要有起伏”“结尾要温馨”“语言简单易懂” 是对故事创作方式的要求,模型会按照这些要求构建故事内容。
8. “5W1H” 法构建提示词的完整流程
8.1 梳理需求要素
8.1.1 列出核心信息
在构建提示词前,先把需求中涉及的 “5W1H” 要素一一列出来。比如,要让模型写一份会议通知,先明确:Who(参会人员)、What(会议主题和内容)、When(会议时间)、Where(会议地点)、Why(开会的目的)、How(通知的格式)。
8.1.2 筛选关键要素
不是所有任务都需要用到 “5W1H” 的全部要素,要根据任务特点筛选关键要素。比如,简单的翻译任务,可能只需要明确 What(翻译内容)和 How(翻译语言)。
8.2 组织要素顺序
8.2.1 按逻辑排列
把梳理好的要素按逻辑顺序组织起来,一般可以先说明任务(What),再补充相关的 Who、When、Where、Why,最后说明 How(输出要求)。例如,“作为公司员工(Who),为了传达项目进度(Why),请写一份项目周报告(What),内容包括本周完成的工作和下周计划,时间范围是 2024 年 10 月 14 日 - 10 月 20 日(When),用 Word 文档常见的格式(How)。”
8.2.2 避免信息混乱
组织要素时,要条理清晰,避免信息交叉或重复。如果要素较多,可以分点说明,但在提示词中一般用连贯的语句表达。
8.3 检查与调整
8.3.1 检查完整性
检查是否有遗漏的关键要素,确保需求信息完整。比如,写会议通知时,漏了会议时间,会导致接收者无法参会。
8.3.2 检查清晰度
通读提示词,看每个要素的表述是否清晰,是否有模糊或歧义的地方。如果有,及时修改,确保模型能准确理解。
9. 不同场景下 “5W1H” 法的应用实例
9.1 场景一:教育学习
9.1.1 任务:请模型讲解一道数学题
“5W1H” 要素:
- Who:学生(用户)、数学老师(模型角色)
- What:讲解一道初二的一元二次方程应用题
- When:无特定时间(可省略)
- Where:无特定地点(可省略)
- Why:帮助理解这类题型的解题思路
- How:用分步讲解的方式,每一步说明理由
提示词:“假设你是一名数学老师,我是初二学生,这道一元二次方程应用题我不太懂:‘一个长方形的周长是 30 厘米,面积是 50 平方厘米,求长方形的长和宽。’请你分步讲解解题过程,每一步说明理由,帮我理解这类题的思路。”
9.1.2 效果分析
模型会以数学老师的身份,针对初二学生的理解水平,分步讲解设未知数、列方程、解方程的过程,并解释每一步的依据,符合 “5W1H” 要素的要求,能有效帮助学生理解。
9.2 场景二:职场办公
9.2.1 任务:请模型写一份产品推广方案
“5W1H” 要素:
- Who:市场部员工(用户)、方案撰写者(模型)、推广对象(年轻上班族)
- What:推广一款新上市的便携式咖啡机
- When:2024 年 11 月 - 12 月(推广时间)
- Where:线上(社交媒体、电商平台)、线下(写字楼周边)
- Why:提高产品知名度,促进销售
- How:方案包括推广渠道、宣传内容、活动策略,用清晰的结构呈现
提示词:“作为市场部员工,需要推广一款新上市的便携式咖啡机,目标客户是年轻上班族。推广时间定在 2024 年 11 月 - 12 月,渠道包括线上社交媒体、电商平台和线下写字楼周边。请写一份推广方案,内容要包括各渠道的宣传内容和活动策略,目的是提高产品知名度和促进销售,方案用清晰的结构呈现。”
9.2.2 效果分析
模型会结合年轻上班族的特点(喜欢便捷、注重效率),在指定的时间和渠道内,设计符合他们喜好的宣传内容和活动,方案结构清晰,能满足推广需求。
9.3 场景三:日常生活
9.3.1 任务:请模型推荐周末活动
“5W1H” 要素:
- Who:一家三口(用户)
- What:推荐周末适合的活动
- When:周六一天
- Where:北京
- Why:增进家人感情,让孩子开心
- How:推荐 3 个活动,每个活动说明亮点和适合的时间
提示词:“我们是一家三口,想在北京找一个周六一天适合的活动,目的是增进家人感情,让孩子开心。请推荐 3 个活动,每个活动说明亮点和适合的时间段。”
9.3.2 效果分析
模型会结合北京的周末活动资源,推荐如动物园、亲子农场、科技馆等适合一家三口的活动,每个活动说明亮点(如动物互动、亲子游戏、科技体验)和上午、下午的时间安排,贴合需求。
10. 运用 “5W1H” 法的注意事项
10.1 灵活取舍要素
10.1.1 不必强求全要素
不是所有任务都需要用到 “5W1H” 的全部六个要素,要根据任务的复杂程度和实际需求灵活取舍。比如,简单的查询天气任务,只需明确 What(查询某地天气)和 When(查询哪天的天气)即可。
10.1.2 突出核心要素
对于重要的要素,要详细说明;次要或无关的要素,可以省略。比如,写一篇关于友谊的散文,可能不需要明确 When 和 Where,重点突出 What(散文主题和风格)即可。
10.2 避免要素冗余
10.2.1 不重复表述
同一要素的信息不要重复表述,避免提示词冗长。比如,已经说明 “会议时间是 2024 年 10 月 20 日下午 3 点”,就不必再重复 “开会的时间定在 10 月 20 日,具体是下午 3 点”。
10.2.2 不添加无关信息
与任务无关的 “5W1H” 要素不要添加,以免干扰模型理解。比如,让模型推荐一本小说时,不必说明 “我昨天吃了什么(无关的 What)”。
10.3 结合模型特点调整
10.3.1 考虑模型的理解能力
不同的大模型,理解能力有所差异。对于理解能力较弱的模型,“5W1H” 要素的表述要更简单、直接;对于能力强的模型,可以适当增加要素的复杂度。
10.3.2