【AI】提示词入门实战:用10个基础问题测试大模型响应

 

提示词入门实战:用 10 个基础问题测试大模型响应

对于刚接触大模型的人来说,学会写提示词是很重要的一步。而测试大模型对不同提示词的响应,能帮助我们快速掌握提示词的撰写技巧。本文选取 10 个基础问题,通过实战测试,看看大模型的表现如何,同时分析这些问题背后的提示词逻辑,让新手能更快入门。

1. 问题一:“什么是人工智能?”—— 测试基础概念理解能力

1.1 测试目的

这个问题主要测试大模型对基础概念的理解和解释能力。通过简单直接的提问,看模型能否用通俗易懂的语言把 “人工智能” 这个概念讲清楚。

1.2 提示词示例

“什么是人工智能?请用简单的话解释一下。”

1.3 大模型理想响应

理想的响应应该包含人工智能的核心:让机器模拟人类的智能行为,比如学习、推理、判断等。可以举例说明,比如语音助手、自动驾驶等都是人工智能的应用。语言要口语化,避免太多专业术语。

1.4 常见问题分析

如果模型的回答过于复杂,充满专业术语,说明提示词中 “用简单的话解释” 这一要求没有被充分理解,下次可以更明确地要求 “避免专业术语,举 1 - 2 个例子”。

2. 问题二:“帮我写一句早安问候语。”—— 测试简单文本生成能力

2.1 测试目的

测试大模型根据简单指令生成特定类型文本的能力,看它能否把握 “早安问候语” 的场景和语气。

2.2 提示词示例

“帮我写一句早安问候语,要温馨一点。”

2.3 大模型理想响应

理想的问候语应该简洁、温暖,带有积极的情绪,比如 “早上好呀,新的一天充满阳光,愿你有个好心情!” 既符合早安的场景,又体现了温馨的要求。

2.4 常见问题分析

如果生成的问候语过于正式或生硬,比如 “早晨好,祝你今天顺利”,可能是提示词中 “温馨一点” 的风格要求不够明确,可以补充 “带点亲切感,像朋友之间的问候”。

3. 问题三:“北京和上海哪个城市更大?”—— 测试事实性问答能力

3.1 测试目的

测试大模型对事实性信息的掌握和比较能力,看它能否准确回答两个城市的大小比较,并给出依据。

2.2 提示词示例

“北京和上海哪个城市的面积更大?请说明理由。”

3.3 大模型理想响应

理想的响应应该明确指出北京的面积比上海大,并给出具体的面积数据(大致范围即可),比如 “北京的面积更大,北京面积约 1.64 万平方千米,上海面积约 6340 平方千米”。

3.4 常见问题分析

如果模型回答错误或没有给出依据,可能是对这两个城市的面积数据掌握不准确。这种情况下,可以在提示词中补充 “根据最新的数据”,提醒模型调用准确信息。

4. 问题四:“把‘我很高兴’翻译成英语。”—— 测试语言翻译能力

4.1 测试目的

测试大模型的基础翻译能力,看它能否准确将简单的中文句子翻译成英语,保证语法正确、语义一致。

4.2 提示词示例

“把‘我很高兴’翻译成英语。”

4.3 大模型理想响应

正确的翻译是 “I am very happy”,语法正确,和原句的语义完全一致。

4.4 常见问题分析

如果出现翻译错误,比如翻译成 “I very happy”,说明模型的语法掌握有疏漏。对于这种简单句子,一般不会出错,若出错可以再次提问,或在提示词中要求 “确保语法正确”。

5. 问题五:“为什么天空是蓝色的?”—— 测试科学知识解释能力

5.1 测试目的

测试大模型对科学现象的解释能力,看它能否用通俗易懂的语言说明天空呈蓝色的原因,避免过于深奥的理论。

5.2 提示词示例

“为什么天空是蓝色的?用简单的话解释,不要太复杂。”

5.3 大模型理想响应

理想的解释应该提到光的散射,比如 “阳光中有不同颜色的光,蓝色的光更容易被空气中的微小颗粒散射,所以我们看到的天空是蓝色的”,简单明了,容易理解。

5.4 常见问题分析

如果解释中出现太多光学专业术语,比如 “瑞利散射”,而没有通俗化解释,说明提示词中 “不要太复杂” 的要求没被完全理解,可以进一步要求 “用生活中的例子说明,比如和彩虹的形成有点像”。

6. 问题六:“列出 3 种常见的水果。”—— 测试列表生成能力

6.1 测试目的

测试大模型根据数量要求生成列表的能力,看它能否准确列出符合 “常见水果” 条件且数量为 3 种的内容。

6.2 提示词示例

“列出 3 种常见的水果,每种后面加一句简单的特点描述。”

6.3 大模型理想响应

理想的列表应该是常见的水果,比如:

  1. 苹果:味道酸甜,富含维生素。
  1. 香蕉:口感软糯,能快速补充能量。
  1. 橙子:水分充足,含有丰富的维生素 C。

既符合数量要求,又有简单的特点描述。

6.4 常见问题分析

如果列出的水果不常见,比如 “榴莲”(虽然常见但并非所有人都认为常见),或者数量不对,可能是对 “常见” 的理解有偏差,下次可以提示 “大众普遍熟悉的水果”。

7. 问题七:“帮我制定一个 5 分钟的健身计划。”—— 测试简单计划制定能力

7.1 测试目的

测试大模型根据时间限制制定特定类型计划的能力,看它能否在 5 分钟的时间内,安排合理、简单易行的健身动作。

7.2 提示词示例

“帮我制定一个 5 分钟的健身计划,适合在家做,动作简单点。”

7.3 大模型理想响应

理想的计划应该包含热身和几个简单动作,时间分配合理,比如:

  1. 热身(1 分钟):原地踏步,活动手腕脚腕。
  1. 深蹲(1 分钟):15 - 20 次,膝盖不要超过脚尖。
  1. 俯卧撑(1 分钟):如果做不了标准的,可以做跪姿俯卧撑,10 - 15 次。
  1. 平板支撑(1 分钟):坚持 30 秒,休息 10 秒,再坚持 20 秒。
  1. 放松(1 分钟):拉伸手臂和腿部肌肉。

7.4 常见问题分析

如果计划中的动作难度太大或时间分配不合理,比如包含需要器械的动作,可能是提示词中 “适合在家做,动作简单点” 的要求不够明确,可以补充 “不需要任何器械,适合健身新手”。

8. 问题八:“这篇短文的主要内容是什么?[短文内容]”—— 测试文本总结能力

8.1 测试目的

测试大模型对一段文本的理解和总结能力,看它能否抓住短文的核心内容,用简洁的语言概括出来。

8.2 提示词示例

“这篇短文的主要内容是什么?请用两三句话总结。短文:‘春天来了,小草从土里钻了出来,花儿也开了,有红色的、黄色的、紫色的,非常漂亮。小鸟在树上叽叽喳喳地叫着,好像在欢迎春天的到来。’”

8.3 大模型理想响应

理想的总结应该涵盖短文的主要元素:春天来了,小草、花儿的变化,以及小鸟的表现,比如 “短文主要讲了春天来了,小草长出、花儿开放,小鸟在树上鸣叫,迎接春天”。

8.4 常见问题分析

如果总结遗漏了重要内容,比如没提到小鸟,可能是模型对短文的理解不够全面。可以在提示词中要求 “涵盖短文中提到的主要事物”。

9. 问题九:“明天会下雨吗?”—— 测试实时信息获取能力

9.1 测试目的

测试大模型对实时信息的获取和处理能力,由于天气是实时变化的,看它能否说明无法准确预测,或提示需要结合具体地点和最新天气预报。

9.2 提示词示例

“明天会下雨吗?我在广州。”

9.3 大模型理想响应

理想的响应应该说明天气具有实时性,需要查看最新的天气预报,比如 “我无法准确预测明天广州是否会下雨,建议你查看当地最新的天气预报,获取更准确的信息”。

9.4 常见问题分析

如果模型给出了具体的下雨或不下雨的结论,可能是它没有意识到自己无法获取实时天气信息。这种情况下,需要知道模型的局限性,在提示词中可以提前说明 “由于天气实时变化,请告诉我是否能准确回答”。

10. 问题十:“用‘阳光’‘笑脸’‘公园’写一段话。”—— 测试词语组合创作能力

10.1 测试目的

测试大模型根据指定词语进行创作的能力,看它能否将 “阳光”“笑脸”“公园” 这三个词语自然地融入一段话中,内容连贯、有画面感。

10.2 提示词示例

“用‘阳光’‘笑脸’‘公园’写一段话,描绘一个开心的场景。”

10.3 大模型理想响应

理想的段落应该自然包含三个词语,场景开心,比如 “周末的公园里,阳光洒在地上,暖洋洋的。小朋友们在草地上奔跑,脸上洋溢着灿烂的笑脸,大人们坐在旁边聊天,整个公园都充满了欢乐的气息。”

10.4 常见问题分析

如果词语使用生硬,比如 “公园里有阳光,还有笑脸”,说明模型没有很好地将词语融入场景。可以在提示词中要求 “让词语自然地出现在句子中,描述一个完整的场景”。

11. 从测试结果看提示词撰写的关键点

11.1 明确任务类型

在提示词中,要清楚告诉大模型要做什么,是问答、生成文本、翻译还是总结等。比如问题二中,明确 “写一句早安问候语”,让模型知道任务是文本生成。

11.2 给出具体要求

除了任务类型,还要给出具体的要求,比如风格、数量、格式等。问题六中,“列出 3 种”“每种后面加一句简单的特点描述”,这些具体要求让模型的输出更符合预期。

11.3 考虑模型局限性

要知道大模型不是万能的,对于实时信息、非常专业的领域知识等,可能无法准确回答。问题九中,天气是实时变化的,模型无法准确预测,提示词中可以提前考虑到这一点。

11.4 语言简洁直接

提示词要用简单、直接的语言,避免模糊、复杂的表述。问题一中,“用简单的话解释” 比 “用通俗易懂且不包含专业术语的语言进行阐释” 更简洁,模型也更容易理解。

12. 测试后的提示词优化方法

12.1 根据响应调整要求

如果模型的响应不符合预期,分析原因后调整提示词中的要求。比如问题二中,模型生成的问候语不够温馨,下次可以更具体地描述温馨的感觉。

12.2 补充必要信息

当模型的回答遗漏关键内容时,在提示词中补充必要的信息。比如问题八中,总结遗漏了小鸟,可以补充 “包括短文中提到的动物”。

12.3 明确输出格式

对于需要特定格式的任务,在提示词中明确输出格式。比如问题七中,健身计划可以要求 “分点列出,每个动作注明时间”,让输出更清晰。

12.4 控制信息长度

提示词中的信息不要过多或过少,过多会让模型抓不住重点,过少则无法明确需求。比如问题三中,“北京和上海哪个城市的面积更大?请说明理由”,信息长度适中,既明确了问题,又提出了要求。

13. 不同大模型对基础问题的响应差异

13.1 综合型大模型

像 ChatGPT、文心一言这类综合型大模型,对这 10 个基础问题的响应通常比较全面,无论是概念理解、文本生成还是事实问答,都能有较好的表现,能较好地理解提示词中的各种要求。

13.2 专项型大模型

有些专项型大模型,比如专注于翻译的模型,在问题四的翻译任务中可能表现更出色,但在文本创作、计划制定等任务中,可能不如综合型模型灵活。

13.3 新手选择建议

对于新手来说,刚开始可以选择综合型大模型进行测试和练习,因为它们的适用范围更广,能应对多种基础任务,有助于更好地掌握提示词的撰写技巧。

14. 实战练习:自己设计提示词进行测试

14.1 练习步骤

14.1.1 确定测试任务

先确定要测试大模型的哪种能力,比如文本分类、情感分析等。

14.1.2 设计提示词

根据任务类型,设计包含任务要求、具体信息的提示词,语言要简单直接。

14.1.3 观察响应结果

提交提示词后,观察大模型的响应,看是否符合预期。

14.1.4 分析与优化

分析响应结果,找出不足,然后优化提示词,再次测试,直到得到满意的结果。

14.2 练习示例

任务:测试情感分析能力。

初始提示词:“‘这个电影太好看了,我看了三遍’这句话的情感是正面的吗?”

响应:“是正面的。”

分析:响应正确,但可以更详细。

优化提示词:“‘这个电影太好看了,我看了三遍’这句话表达的情感是什么?请说明理由。”

响应:“这句话表达的是正面情感。因为‘太好看了’直接表达了对电影的喜爱,‘看了三遍’也体现出对电影的认可。”

15. 提示词入门常见误区

15.1 提示词越长越好

很多新手觉得提示词写得越长,模型越能理解。但实际上,过长的提示词可能包含冗余信息,让模型抓不住重点。比如问题三中,不需要详细描述北京和上海的其他特点,只需问面积比较即可。

15.2 不明确具体要求

只说 “帮我写点东西”,而不说明写什么、写多少、什么风格,模型很难给出符合预期的输出。就像问题二中,明确 “早安问候语”“温馨一点”,才能得到合适的结果。

15.3 忽略模型的反馈

模型的响应是对提示词的直接反馈,有些新手不分析反馈结果,只是重复提交类似的提示词,进步很慢。应该像 14.1.4 中说的,根据反馈优化提示词。

15.4 过度依赖模型

虽然大模型能完成很多任务,但新手不能过度依赖,要通过测试和练习,理解提示词的逻辑,提高自己的撰写能力,而不是让模型随意生成内容。

16. 基础问题测试的意义

16.1 快速了解模型能力

通过这 10 个基础问题的测试,能快速了解大模型在不同方面的能力,知道它擅长什么,不擅长什么,方便后续根据模型特点来写提示词。

16.2 掌握提示词基本逻辑

在测试过程中,能逐渐掌握提示词的基本逻辑:明确任务、给出要求、语言简洁等,为撰写更复杂的提示词打下基础。

16.3 建立与模型的沟通节奏

就像和人沟通一样,和大模型沟通也需要节奏。通过测试,能找到让模型理解自己的方式,建立起顺畅的沟通节奏,提高使用效率。

16.4 增强使用信心

对于新手来说,刚开始使用大模型可能会有畏难情绪。通过基础问题的测试,看到模型能按照提示词完成任务,能增强使用信心,更愿意深入学习提示词技巧。

17. 进阶方向:从基础问题到复杂任务

17.1 增加任务复杂度

在基础问题的基础上,逐渐增加任务的复杂度。比如从写一句早安问候语,到写一篇完整的早安主题短文;从总结一段短文,到总结一篇长文章。

17.2 结合多个任务类型

尝试让大模型完成结合多个任务类型的工作,比如先翻译一段文字,再总结翻译后的内容,最后根据总结写一段评论。

17.3 加入更多约束条件

在提示词中加入更多的约束条件,比如 “写一篇关于环保的短文,要求用总分总结构,包含 3 个例子,字数在 300 字左右,语言正式”,锻炼模型在多约束下的响应能力。

17.4 进行多轮对话测试

从单轮提问,过渡到多轮对话,比如先问 “什么是人工智能”,然后根据模型的回答,进一步问 “人工智能有哪些潜在的风险”,测试模型在上下文连贯下的响应能力。

18. 总结测试经验,提升提示词水平

18.1 记录成功案例

把那些能让模型给出理想响应的提示词记录下来,分析它们的结构和特点,比如如何明确任务、如何给出要求,供以后参考。

18.2 整理失败教训

对于那些效果不好的提示词,也要整理起来,分析失败的原因,是任务不明确、要求不清楚,还是忽略了模型的局限性,避免以后再犯类似的错误。

18.3 定期复习练习

定期回顾记录的案例和教训,重新

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值