Spark SQL 算子实例

本文介绍了一个使用 Apache Spark SQL 进行数据聚合的具体示例,通过创建 RDD 并将其转换为 DataFrame,最后利用 groupBy 和 agg 方法进行数据汇总。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package sqlText

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.types.{StructType, IntegerType, StringType, StructField}

/**
  * Created by xiaoxu
  */
object SparkSQLAgg {
  def main(args: Array[String]) {
    System.setProperty("hadoop.home.dir", "E:\\winutils-hadoop-2.6.4\\hadoop-2.6.4")
    val conf = new SparkConf().setMaster("local[2]").setAppName(this.getClass.getName)
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
    import sqlContext.implicits._
    val userData = Array(
      "2016-04-15,1001,http://spark.apache.org,1000",
      "2016-04-15,1001,http://hadoop.apache.org,1001",
      "2016-04-15,1002,http://fink.apache.org,1002",
      "2016-04-16,1003,http://kafka.apache.org,1020",
      "2016-04-16,1004,http://spark.apache.org,1010",
      "2016-04-16,1002,http://hive.apache.org,1200",
      "2016-04-16,1001,http://parquet.apache.org,1500",
      "2016-04-16,1001,http://spark.apache.org,1800"
    )
    import org.apache.spark.sql._
    val parallelize: RDD[String] = sc.parallelize(userData)
    val userDateRDDRow = parallelize.map(row => {
      val splitted = row.split(",")
      Row(splitted(0).replaceAll("-", ""), splitted(1).toInt, splitted(2), splitted(3).toInt)
    })
    // 构造字段,与数据匹配,便于今后查询
    val structTypes = StructType(Array(
      StructField("date", StringType, true),
      StructField("id", IntegerType, true),
      StructField("url", StringType, true),
      StructField("amount", IntegerType, true)
    ))
    val createDataFrame = sqlContext.createDataFrame(userDateRDDRow, structTypes)
    //统计每个月的数量,直接显示
    createDataFrame.groupBy("date").agg("amount" -> "sum").write.json("")
    // 统计每个月的数量,直接显示,数据量比较大时不能用collect,用write.json("")方法直接保存数据即可
    createDataFrame.groupBy("date").agg("amount" -> "sum").map(row => Row(row(0), row(1))).collect.foreach(println)
    // 停止改程序
    sc.stop()
}}






                
### 关于Java中的Spark算子文档与实例 在Apache Spark中,操作数据的主要方式之一是通过DataFrame API或者Dataset API。对于Java开发者来说,可以利用`SQLContext.read()`方法来读取不同类型的文件并创建DataFrame对象[^2]。 当处理由多个小型文本构成的数据集时,`SparkContext.wholeTextFiles`提供了一种便捷的方法,允许将这些小文件作为单独记录进行处理[^1]。此功能特别适用于那些需要保持文件元信息不变的情况,比如路径名等附加属性。 针对更复杂的转换需求,则有多种内置算子可供调用,例如map、filter、reduceByKey等等。下面给出一段简单的代码片段展示如何使用Java编写基本的Word Count程序: ```java import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; // 创建上下文环境... String inputFile = "hdfs://..."; JavaRDD<String> input = sc.textFile(inputFile); JavaPairRDD<String, Integer> counts = input.flatMap(line -> Arrays.asList(SPACE.split(line)).iterator()) .mapToPair(word -> new Tuple2<>(word, 1)) .reduceByKey((a, b) -> a + b); counts.saveAsTextFile(outputPath); ``` 如果遇到了诸如迭代次数过多导致的任务失败问题,可以通过调整配置参数解决。例如设置`spark.sql.optimizer.maxIterations`到更大的数值能够有效防止因优化器达到最大迭代限制而抛出异常的情形发生[^3]。 #### 注意事项 - 使用适当版本的依赖库以确保兼容性; - 对输入源做预验证减少运行期间可能出现的问题; - 合理规划资源分配提高作业执行效率;
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盒马coding

你的支持是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值