微软PowerBI考试 PL300-选择 Power BI 模型框架
20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据模型的核心。
Power BI 为你在设计模型时提供了一种选择。 你可以使用 Power BI Desktop 来开发模型,还可以使用不同的框架进行模型开发。 这些框架有助于提供强大的性能和/或准实时结果。
介绍 Power BI 模型基础知识
本单元介绍 Power BI 模型的术语。 必须理解这些术语才能为项目选择适当的模型框架。 本单元介绍以下术语:
数据模型
Power BI 数据集
分析查询
表格模型
星型架构设计
表存储模式
模型框架
数据模型
Power BI 数据模型是针对分析进行优化的可查询数据资源。 报表可以使用以下两种分析语言之一来查询数据模型:数据分析表达式 (DAX) 或多维表达式 (MDX)。 Power BI 使用 DAX,而分页报表可以使用 DAX 或 MDX。 “在 Excel 中分析”功能使用 MDX。
Power BI 数据集
在 Power BI Desktop 中开发 Power BI 模型并将其发布到 Power BI 服务中的工作区后,该模型称为数据集。 数据集是一个 Power BI 项目,它是 Power BI 报表和仪表板中可视化效果的数据源。
分析查询
Power BI 报表和仪表板必须查询某个数据集。 当 Power BI 可视化数据集数据时,它会准备并发送一个分析查询。 分析查询从模型生成查询结果,该结果很容易理解,尤其是以可视化的情况下。
分析查询包括按以下顺序执行的三个阶段:
筛选
分组
汇总
筛选(有时称为切片)将查询范围缩小为一部分模型数据。 筛选器值在查询结果中不可见。 大多数分析查询会应用筛选器,因为按时间段(通常还包括其他属性)进行筛选是常见的做法。 筛选以不同的方式发生。 在 Power BI 报表中,可以在报表、页面或视觉对象级别设置筛选器。 报表布局通常包括切片器视觉对象,以便筛选报表页面上的视觉对象。 当模型强制实施行级安全性 (RLS) 时,它会将筛选器应用于模型表以限制对特定数据的访问。 用于汇总模型数据的度量也可以应用筛选器。
分组(有时称为切块)将查询结果划分为组。 每个组也是一个筛选器,但与筛选阶段不同,筛选器值在查询结果中可见。 例如,按客户分组会按客户筛选每个组。
汇总生成单值结果。 通常,报表视觉对象使用聚合函数来汇总数字字段。 聚合函数包括 sum、count、minimum、maximum 等。 可以通过聚合列来实现简单汇总,也可以通过使用 DAX 公式创建度量来实现复杂汇总。
示例:Power BI 报表页面包含一个切片器,用于按一年时间段进行筛选。 其中还有一个柱形图视觉对象显示筛选年份的季度销售额。
在此示例中,切片器按 2021 日历年筛选视觉对象。 柱形图按季度(筛选年份)分组。 每一列是代表可见筛选器的组。 列高度代表筛选年份的每个季度的汇总销售值。
表格模型 Power BI 模型是一种表格模型。 表格模型由一个或多个包含列的表组成。 它还可以包含关系、层次结构和计算。
星型架构设计 若要生成优化且易于使用的表格模型,我们建议生成星型架构设计。 星型架构设计是由关系数据仓库广泛采用的成熟建模方法。 它要求将模型表分类为维度或事实。
维度表描述业务实体(即建模对象)。 实体可以包含产品、人员、地点和包括时间