自然语言处理之——关键词提取(二)

本文介绍了自然语言处理中的关键词提取,探讨了TF-IDF和TextRank算法的局限性,并引入了主题模型的概念。重点讲解了LSA/LSI算法,包括其工作原理、BOW模型和SVD奇异值分解,阐述了SVD在降维和特征分解中的作用。此外,还提及了LSA的优缺点及其在实际应用中的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 摘要

在通常的情况下,使用TF-IDF和TextRank算法就可以完成大部分关键词提取的任务。但还会有一些特殊场景,仅基于文档本身的关键词提取还不够准确和全面。例如记录国家地理的文档,文档中会有新疆、辽宁、四川等地名的频次会很高,但文中并不会显示的出现地理等词语。此场景下TF-IDF和TextRank算法就不能够全面的发现主题信息,这时候就需要用到主题模型。

图1:主题模型映射示意图

二. 主题模型概述

TF-IDF和TextRank算法这两种模型是直接根据词与文档的关系,对关键词进行抽取。这两种算法的原理仅用到了文档中的统计信息,对文档本身所包含的信息无法充分的利用,尤其是其中的语义信息,对文档关键词的提取是一种分厂有用的信息。相较TF-IDF和TextRank算法,主题模型认为在词与文档之间是没有直接的联系,它们还存在着一个维度将其关联,主题模型将这个维度称为主题。并且每个文档都对应着一个或多个主题,每个主题都会有对应的词分布。所以通过主题就可以得到每个文档的词分布。根据这样的原理。便得到了主题模型的核心表达式

图2:主题模型表达式

在一个已知的文本数据集中,每个词和文档对应的P(wi|dj)都是已知的。而主题模型就是通过这个已知的信息,计算P(wi|tk)和P(tk|dj)的值,从而得到主题的词分布和文档的主题分布信息。想要得到这个的分布信息,目前常用的方法就是LSA(LSI)和LDA。其中LSA主要是采用SVD(奇异值分解)进行暴力破解,而LDA采取通过贝

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值