自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2146)
  • 收藏
  • 关注

原创 手把手部署一个属于你的私有大模型,非常详细收藏这一篇就行了!_私有大模型搭建

手把手部署一个属于你的私有大模型,非常详细收藏这一篇就行了!_私有大模型搭建

2025-06-09 14:06:03 975

原创 一键打造你的个人AI智能知识库:轻松上手,快速实现

一键打造你的个人AI智能知识库:轻松上手,快速实现

2025-06-09 14:02:10 1010

原创 本地部署大模型与基于RAG构建私有知识库,一步到位!_大模型rag构建知识库实践

本地部署大模型与基于RAG构建私有知识库,一步到位!_大模型rag构建知识库实践

2025-06-07 14:37:26 743

原创 从零到专家:一步步教你训练自己的大型模型——完整教程_如何训练自己的大模型

从零到专家:一步步教你训练自己的大型模型——完整教程_如何训练自己的大模型

2025-06-07 11:28:12 716

原创 【实用教程】手把手教你高效搭建个人知识库,非常详细收藏我这一篇就够了

Word2Vec是一种用于处理自然语言处理的模型,它是在2013年由Google的研究员Mikolov等人首次提出的。Word2Vec通过训练海量的文本数据,能够将每个单词转换为一个具有一定维度的向量。这个向量就可以代表这个单词的语义。因为这个向量是在大量语境中学到的,所以这个向量能很好的表达这个单词的语义。Word2Vec包括Skip-Gram和CBOW两种模型,主要是通过优化模型计算词与词之间的关系,从而获得词的向量表示。Skip-Gram模型是通过一个词预测其上下文。

2025-06-06 15:31:41 1228

原创 什么是 Agentic RAG,一文读懂 Agentic RAG 数据检索范式

什么是 Agentic RAG,一文读懂 Agentic RAG 数据检索范式

2025-06-06 15:15:03 1260

原创 一文吃透多模态:多模态大模型的探索 五大研究方向与十大应用领域!

在大模型兴起之后,产业也试图在图像、视频、音频等更多模态领域复现“Scaling Law”的成功,继续实现大模型的“智能涌现”。。多模态的本质要利用视觉、听觉、触觉、味觉等语言之外更加丰富的感知通道,去模拟人类理解与表达信息的能力。理想中的多模态大模型具备跨模态的泛化理解和生成能力,其更符合人类感知世界的方式,其或能进一步打开AI能力的上限。产业界也在积极探索多模态大模型可行的技术路径,在多模态领域“复刻”大语言模型的成功。

2025-05-15 17:04:53 1325

原创 什么是大模型?(超详细)大模型从入门到精通,看这一篇就够了

大模型是指具有数千万甚至数亿参数的深度学习模型,广泛应用于自然语言处理、图像生成等领域。大模型通过增加参数数量提升性能,采用预训练+微调的训练模式,能够处理复杂任务和数据。与小模型相比,大模型更全能化、通用化,具有更多参数、更大数据集和更复杂架构,但需要更高的计算资源。大模型可分为语言大模型、视觉大模型和多模态大模型,按应用领域可分为L0通用大模型、L1行业大模型和L2垂直大模型。大语言模型(LLM)是大模型的子分类,基于Transformer架构,通过注意力机制和位置编码处理文本数据,执行自然语言处理任务

2025-05-15 15:51:24 753

原创 2025普通人转行,推荐一个好就业的方向——人工智能大模型,非常详细!

2024年高校毕业生规模预计达1179万人,就业压力持续加大。为应对这一挑战,选择就业前景好的专业至关重要。人工智能作为当前热门领域,2024年其影响力将进一步扩大,涉及医疗、交通、教育等多个行业,核心产业规模预计突破570亿元。人工智能相关岗位需求旺盛,预计到2030年人才缺口将达500万,且薪酬水平较高。对于零基础学习者,系统性的学习资料和实战案例将有助于快速入门和掌握相关技能。

2025-05-15 15:10:44 989

原创 告别GPU限制!DeepSeek-R1 大模型全平台部署教程

本文介绍了如何在不同平台上离线部署DeepSeek-R1大模型,包括Linux、Windows和安卓系统。离线部署的优势在于数据安全、功能定制和无需联网的便捷性。文章详细讲解了使用ollama工具在Linux和Windows系统上的部署步骤,包括下载ollama、获取DeepSeek-R1模型以及运行模型进行推理聊天。对于安卓系统,文章提供了通过Termux软件配置ollama环境并运行模型的指南。此外,还介绍了如何通过命令行和OpenAI库调用DeepSeek-R1模型进行对话。文章旨在帮助用户在不同设备

2025-05-13 15:28:20 1326

原创 带你手搓一个AI Agent,如何本地部署AI智能体平台?收藏这一篇就够!

本文介绍了如何在个人电脑上搭建AI智能体平台,支持自定义聊天机器人、设计智能体、编排工作流、知识库、RAG管道等功能,并支持本地大模型接入和API接口。智能体的必要性在于突破单一AI模型的局限性,通过多模型协同工作提升系统智能化。文章重点推荐了开源LLM应用开发平台Dify,详细介绍了其核心功能,如工作流、模型支持、Prompt IDE、RAG管道、Agent智能体等,并提供了Dify的部署步骤,包括Docker安装、Dify源代码获取、启动和配置账户信息。最后,文章还提供了大模型学习资料,帮助读者从零基础

2025-05-13 15:03:57 2364

原创 大模型微调实战保姆级详细教程手册

大模型的微调操作步骤都大相径庭,本文对chatGLM-6b P-Tuning v2和Baichuan2 QLoRA的详细微调步骤进行介绍,希望能抛砖引玉,供大家学习借鉴。更多AI落地资料还可以参看这里AI应用落地。还有疑问可以来公众号【贝可林】私信我,我骑共享单车到你家探讨。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。

2025-05-13 14:44:41 1390

原创 大语言模型微调实践——LoRA 微调细节

近年来,大语言模型在自然语言处理领域取得了显著进展,但针对特定任务的微调技术仍是关键。LoRA(Low-Rank Adaptation)作为一种高效的微调方法,通过低秩分解模拟全参数微调,显著减少了训练参数量,同时保持了模型性能。本文以代码生成任务为例,结合StarCoder模型,详细介绍了LoRA的微调原理及实践。LoRA通过在预训练模型旁增加低秩矩阵,仅训练少量参数,实现了高效的微调。实验表明,LoRA在参数量大幅减少的情况下,性能与全量微调相当甚至更优。文章还提供了LoRA微调的具体实现步骤,包括环境

2025-05-13 14:24:43 1078

原创 大模型学习进阶五阶段:你目前处于哪一级?

其实一开始就找到了,需要用langchain来跑大模型,但是还需要用一个很坑很坑的东西:Anaconda,这玩意儿简直是个坑,这工具是为了给我们在windows上创建python环境,然后安装pytorch,下载几个G的大模型,然后安装依赖,搞了半天,搭起来了,但是对话的时候却报错了。第四阶段,看到大神已经在整合各种大模型,并能够熟练训练成更加贴合自己的模型,整合到实际的业务场景中,并且实现多个模型进行同时回答,并且还有专门的校验模型,如果发现几个模型的答案不一致,给出提示,后续进行人工校正。

2025-05-12 15:41:45 739

原创 企业如何建立自己的专属大模型?

自OpenAI发布ChatGPT以来,AI大模型市场迅速升温,国内外科技企业纷纷推出自家大模型。中国已发布近80个10亿参数规模以上的大模型,大模型正在重塑产业。然而,企业在自建大模型时面临诸多挑战,如如何构建专属垂直领域大模型、高效处理数据、动态更新模型数据以及安全接入私有数据等。开源大模型成为企业拥抱大模型的重要途径,Meta的LLaMA和Llama 2等开源模型为开发者提供了基础。企业可以通过在开源模型基础上进行指令微调,结合私有数据打造专属大模型。此外,向量数据库作为大模型的“外置缓存”,在处理非结

2025-05-12 14:50:30 775

原创 从大模型(LLM)、检索增强生成(RAG)到智能体(Agent)的应用

随着人工智能技术的快速发展,大型语言模型(LLM)、检索增强生成(RAG)和智能体(Agent)成为推动AI进步的核心技术。LLM如GPT系列提供了基础的语言理解和生成能力,RAG则通过结合知识库提升输出的准确性和相关性,而智能体则综合运用LLM和RAG等技术,在复杂环境中执行任务。这些技术从基础到应用逐级深入,推动了AI在各领域的广泛应用。OpenAI的GPT-4及其工程化应用(如ChatGPT Plus、GPTs插件和Assistant API)展示了如何通过LLM、RAG和智能体的结合,实现更高效的A

2025-05-12 14:21:57 1120

原创 什么是 Agentic RAG,一文读懂 Agentic RAG 数据检索范式

2024年,AI代理工作流程将推动大型语言模型(LLM)应用的进一步发展,特别是在检索增强生成(RAG)领域。Agentic RAG通过将AI代理整合到RAG管道中,克服了传统RAG的局限性,如单一知识源和一次性检索问题。AI代理具备记忆、规划和工具使用能力,能够动态决定检索策略、评估上下文质量,并执行多步骤任务。ReAct框架是AI代理的核心,通过“思考-行动-观察”循环完成任务。Agentic RAG的引入为构建更强大、更通用的LLM应用提供了新的可能性。

2025-05-10 21:50:00 1051

原创 别再傻傻分不清!一文讲透大模型里的 RAG、Agent、微调和提示词工程

本文介绍了人工智能大模型中的四个关键技术:RAG、Agent、微调和提示词工程。RAG通过外挂知识库增强大模型的信息检索能力,使其能够提供更全面、准确的回答。Agent则赋予大模型自主规划和执行任务的能力,使其成为智能助手。微调通过特定领域的数据训练,使大模型在专业领域表现更佳。提示词工程则优化与大模型的沟通,确保其理解并执行用户指令。这四项技术协同工作,提升了大模型的应用效果和智能化水平。

2025-05-10 17:59:25 1220

原创 落地RAG系列:RAG入门及RAG面临的挑战和解决方案!!

2023年,RAG(检索增强生成)成为大模型人工智能系统中的主流架构,其性能、检索效率和准确性成为研究重点。RAG通过整合外部知识源,提升大语言模型(LLMs)的生成准确性和可信度,尤其适用于知识密集型任务。RAG的核心优势在于解决LLMs的幻觉问题、知识缺乏问题、数据安全问题和可信度问题。与微调大模型相比,RAG更适合数据频繁变动、需要出处、对幻觉敏感以及节省GPU成本的场景。RAG分为索引和检索两个阶段:索引阶段将内容解析、分割并向量化存储;检索阶段将用户提问向量化,从向量数据库中检索相似信息并作为上下

2025-05-10 14:50:46 633

原创 一文教你如何搭建基于大模型的智能知识库,看到就是赚到!!

自从2022年底ChatGPT横空出世引爆了大模型技术浪潮,时至今日已经一年有余,如何从技术侧向商业侧落地转化是一直以来业内普遍关注的问题。前排提示,文末有大模型AGI-CSDN独家资料包哦!从目前企业端观察到的情况来看,基于大模型的知识库是一个比较有潜力和价值的应用场景,能够帮助企业大幅提高知识的整合和应用效率。然而由于通用预训练大模型的训练数据主要来源于公开渠道,缺乏企业专业和私有知识,直接使用将难以支撑企业内部的专业知识问答。

2025-05-08 15:18:06 889

原创 RAG 实践指南:使用Ollama与RagFlow构建本地知识库

上一篇文章我们介绍了如何利用 Ollama+AnythingLLM 来实践 RAG ,在本地部署一个知识库。借助大模型和 RAG 技术让我可以与本地私有的知识库文件实现自然语言的交互。前排提示,文末有大模型AGI-CSDN独家资料包哦!本文我们介绍另一种实现方式:利用 Ollama+RagFlow 来实现,其中 Ollama 中使用的模型仍然是Qwen2我们再来回顾一下 RAG 常见的应用架构。

2025-05-08 14:36:15 1001

原创 基于知识图谱增强RAG应用和构建RAG知识库(附教程)

本文是AI落地实践的优秀案例,利用RAG技术(Retrieval-Augmented Generation,检索增强生成)的知识库实践为背景,介绍了RAG技术的发展及存在的不足,以及知识图谱相关的知识,利用RAG技术去完善和智能化知识图谱。在AI技术大量涌现,但应用不足的情况下,指明了现有应用场景、技术与AI结合的具体做法。

2025-05-08 14:18:33 983

原创 RAG与知识库搭建,手把手教你构建RAG系统

自从发现可以利用自有数据来增强大语言模型(LLM)的能力以来,如何将 LLM 的通用知识与个人数据有效结合一直是热门话题。关于使用微调(fine-tuning)还是检索增强生成(RAG)来实现这一目标的讨论持续不断。检索增强生成 (RAG) 是一种使用来自私有或专有数据源的信息来辅助文本生成的技术。它将检索模型(设计用于搜索大型数据集或知识库)和生成模型(例如大型语言模型 (LLM),此类模型会使用检索到的信息生成可供阅读的文本回复)结合在一起。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-05-08 13:52:23 1961

原创 构建企业专属大模型知识库,解决企业知识管理与应用难点

大部分企业的知识管理有三个不足:缺乏长期规划、缺乏组织机制和文化、缺乏智能化,大模型+知识库的体系建设,从知识管理的底层切入,帮助企业探索多场景的知识应用形态,提升企业知识应用价值。本文从[知识库](建设的挑战、AI+知识库建设框架与路径、4个不同场景的知识库落地案例,三个部分详细展开。企业目前在建设知识库过程中会遇到非常多困难,主要总结有以下三个部分。企业无论有无构建知识库,大都采取纸质化办公方式,很多的数字甚至还处于非电子化版本,企业需要去做更多的工作完成这个电子的转换。

2025-05-07 15:48:23 1222

原创 AI知识库和Agent简介及实现

前排提示,文末有大模型AGI-CSDN独家资料包哦!随着人工智能的发展,大规模预训练模型(Large Pre-trained Models,简称大模型)成为了AI领域的重要研究方向。大模型通过大量的数据训练,能够在各种任务中展现出强大的性能。本文将重点介绍AI知识库和智能代理(Agent)的概念及其实现方式,特别是在企业环境中的应用和实现。AI知识库(Knowledge Base)是一个系统化的信息存储结构,旨在支持知识管理和推理。信息存储。

2025-05-07 14:40:33 939

原创 一步步教你如何构建属于自己的个性化人工智能知识库

如何搭建个人AI知识库?前排提示,文末有大模型AGI-CSDN独家资料包哦!分享一下我的整体思路。我觉得方法都是次要的,因为每个人的需求、情况都不同——唯有思路可以借鉴。出发点和对应解法:第一,信息过载,无法逐一细细消化。所以需要AI辅助,通过总结、提炼等方式帮助我们先快速、大致掌握。第二,人脑不适合用来记东西,而应该用来做创造性的工作。所以需要“第二大脑 / Second Brain”来存储,需要AI根据语义进行检索(所有工具都有关键词检索,再加上语义检索就齐全了)。第三,记笔记是对信息做预处理。记笔记的

2025-05-07 14:38:59 1246

原创 手把手教你从零搭建自己的知识库

Word2Vec是一种用于处理自然语言处理的模型,它是在2013年由Google的研究员Mikolov等人首次提出的。Word2Vec通过训练海量的文本数据,能够将每个单词转换为一个具有一定维度的向量。这个向量就可以代表这个单词的语义。因为这个向量是在大量语境中学到的,所以这个向量能很好的表达这个单词的语义。Word2Vec包括Skip-Gram和CBOW两种模型,主要是通过优化模型计算词与词之间的关系,从而获得词的向量表示。Skip-Gram模型是通过一个词预测其上下文。

2025-05-06 16:49:46 917

原创 一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型

这几年,各种新技术、新产品层出不穷,其中,大模型(Large Language Models)作为AI领域的颠覆性创新,凭借其在语言生成、理解及多任务适应上的卓越表现,迅速点燃了科技界的热情。从阿尔法狗的胜利到GPT系列的横空出世,大模型不仅展现了人工智能前所未有的创造力与洞察力,也预示着智能化转型的新纪元。然而,大模型的潜力要真正转化为生产力,实现从实验室到现实世界的平稳着陆,还需跨越理论到实践的鸿沟。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-05-06 16:32:44 998

原创 如何通过AI搭建自己的知识库(智能体)?零基础入门到精通,看这篇就够了!

"扣子"是由字节跳动公司于2024年2月1日推出的一款集成AI智能体开发平台。它开创了国内AI聊天机器人快速开发的先河。▲扣子首页下面是扣子平台创建Bot的页面,对于初次使用的伙伴来说功能确实很多,但不知道从何下手搭建智能体。▲扣子智能体搭建页面。

2025-05-06 15:23:07 2377

原创 大模型本地部署保姆级教程!三种方法教会你如何部署~

今天分享下关于大模型本地部署的一些基础知识,做一个简单的入门,并科普相关的工具使用。

2025-04-30 20:11:17 1964

原创 我们为什么要用本地大模型?本地大模型入门指南!

大模型,在2023年主要称之为大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型,旨在理解和生成自然语言文本。这些模型通过分析和学习海量的文本数据,掌握语言的结构、语法、语义和上下文等复杂特性,从而能够执行各种语言相关的任务。LLM的能力包括但不限于文本生成、问答、文本摘要、翻译、情感分析等。我们最熟悉的大模型,莫过于CHATGPT。但我们最常用的大模型,未必是CHATGPT。

2025-04-30 20:08:45 922

原创 轻松搭建:本地大模型与知识库的简便方法

每款大模型都有不同版本,根据自己的机器来选择,根据官网的文档也说明了,一般7B的模型至少需要8G的内存,13B的模型至少需要16G内存,70B的模型至少需要64G内存。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;不管你是在PC上跑大模型,在Mac上跑大模型,还有在树莓派上跑大模型,

2025-04-28 17:04:52 612

原创 聊一聊国内大模型公司,大模型面试心得、经验、感受

这段时间面试了很多家,也学到了超级多东西。楼主这边背景是做基座预训练算法端为主的,对框架端和RL的内容有一定了解(面试能凑合),对于后端的知识比如ML compiler,kernel,cuda相关的了解就比较浅了(问到觉大概率挂)。硬件几乎不太懂。感觉一圈聊下来几点感悟:大模型这方向真的卷,面试时好多新模型,新paper疯狂出,东西出的比我读的快。Research岗位对工程也有要求,工程端也需要了解模型。感觉比较硬核的岗位,尤其初创公司都是对好几个点都有要求的(应用,模型,框架,底层后端,硬件)。

2025-04-28 16:50:44 1025

原创 大模型面试题:每道都是硬核挑战,没有送分题!

如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-04-28 16:30:02 955

原创 2025年超全大模型常见面试题(附答案),超详细!!

注意力机制是一种模拟人类注意力分配过程的模型,它能够在处理大量信息时,选择性地关注对任务更重要的信息,忽略无关信息。在自然语言处理中,注意力机制常用于机器翻译、文本摘要、问答系统等任务中,帮助模型捕捉输入序列中的关键信息。在计算机视觉中,注意力机制也用于图像识别、目标检测等任务,使模型能够关注图像中的关键区域。

2025-04-28 15:58:02 1620

原创 一个开源的企业私有化大模型服务平台,一键部署异构GPU集群,开箱即用,还能免费商用!

在过去近两年中,AI发展速度超过任何历史时期,基于大模型的各类应用已经渗透到了各行各业中,很多企业都在积极探索如何利用大模型提高公司运营管理的能效。阿里云 CTO 周靖人也说过““当下企业应用大模型存在三种范式:一是对大模型开箱即用,二是对大模型进行微调和持续训练,三是基于模型开发应用,其中最典型的需求是RAG但是如果以企业私有化角度来说,部署大模型或者RAG等系统,就大模型开箱即用这点还远远没有达到,尤其在多异构GPU调度管理的情况下。

2025-04-28 15:41:17 1128

原创 本地私有化部署开源大模型完整教程:LangChain + Streamlit+ Llama

通过LangChain和Streamlit我们可以方便的整合任何的LLM模型,并且通过GGML我们可以将大模型运行在消费级的硬件中,这对我们个人研究来说使非常有帮助的。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。

2025-04-27 14:47:39 904

原创 AI教育辅助:教学设计、教案生成、教研活动设计、课件PPT、备课助手等六大应用场景演示

随着人工智能(AI)技术的快速发展,AI在教育领域的应用日益广泛。AI教育辅助工具在教学设计、教案生成、教研活动设计、备课助手、课件PPT制作、智能互动课堂等方面发挥着重要作用。本文将深入探讨这六大应用场景,并演示AI教育辅助工具的实际应用。AI教育辅助工具可以根据学生的学习需求、兴趣爱好和能力水平,为教师提供个性化的教学设计建议。通过分析学生的学习数据,AI可以为教师推荐合适的教学内容、教学方法和评价方式,从而提高教学效果。AI教育辅助工具可以根据教师的教学目标和课程内容,自动生成教案。

2025-04-27 14:27:35 1388

原创 大模型教程:免费离线AI大模型,断网也能用!!!

大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。这个知道,那后面的名字是哪里来的呢?

2025-04-27 14:10:39 949

原创 小白也可以部署私有化大模型知识库

Ollama 是一个强大的开源工具,专为构建和部署大型语言模型(LLM)设计。它提供了一个直观的命令行界面和服务器支持,使用户能够轻松下载、运行和管理各种流行的开源LLM。与需要复杂配置和强大硬件的传统 LLM 不同,Ollama 让使用大模型变得像操作手机App一样简单便捷。Ollama 支持多种大语言模型,如Qwen2、Llama3、Phi3、Gemma2等,它不仅简化了在本地环境中的运行和测试过程,还降低了技术门槛,让开发者、研究人员和技术爱好者可以快速部署和实验最新的模型技术。Ollama官网。

2025-04-27 13:47:23 578

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除