LangChain开发LLM应用【入门指南】

LangChain是什么?

LangChain 是一个开源的自然语言处理框架,旨在帮助开发者更容易地构建和部署基于LLM的应用(构建和运行AI工作流

LangChain主要解决什么问题?

LLM 的局限性:

在实际的场景中,LLM 擅长在常规上下文下对提示做出响应,但在未接受过训练的特定领域却会遇到挑战。 人们用Prompts来引导 LLM 生成回复,为了让 LLM 在特定领域发挥更佳效果,机器学习工程师需要将其与组织内部数据来源整合,并应用提示工程技术。

LangChain 的出现简化了开发数据响应式应用程序的中间步骤,并提高了 Prompt Engineering 的效率。同时,提供了一套易用、直观的工具和界面,使开发人员能够轻松地将 LLM 与数据源和提示工程技术进行整合。

LangChain可以做什么?

  1. 知识库

  2. 聊天机器人

  3. 智能助理

  4. 文本摘要

  5. 。。。 。。。

LangChain的优势

  1. 简化LLM的集成:LangChain 支持广泛的 LLM(OpenAI 的 ChatGPT、Google 的 BERT等),并抽象了与特定模型或提供商交互的细节,使您可以轻松地在不同的LLM之间切换,而无需大量修改应用程序代码

  2. 模块化组件:LangChain的核心思想是我们可以将不同的组件 “ 链 ” 在一起,以创建更高级的 LLMs 用例

  3. 可扩展性:开发者可以无缝创建自定义组件或将它们与其他库和工具集成

  4. 不断发展的社区和丰富的生态系统:LangChain拥有一个蓬勃发展的开发者社区,包含大量由社区贡献的工具和模块。

 LangChain的安装

pip install langchain
pip install langchain-community

LangChain的核心组件

LangChain 的独特之处之一便是其灵活性和模块化。通过将自然语言处理管道分解为单独的组件,开发人员可以轻松混合和匹配这些构建块,以创建满足其特定需求的自定义工作流程,从而使得 LangChain 成为一个高度适应性的框架,可用于为广泛的用例和行业构建对话式人工智能应用程序。

  1. Chains:“链”是指调用序列(无论是LLM、工具还是数据预处理步骤)。主要支持的方法是使用 LCEL

  2. Model I/O:与任何语言模型进行接口交互的基本组件

  3. Retrieval (Data Connection):用于检索外部数据,然后在执行生成步骤时将其传递给 LLM

  4. Agents:使用语言模型来选择要采取的一系列操作。在链中,一系列操作被硬编码(在代码中)。在代理中,语言模型被用作推理引擎来确定要采取哪些操作以及按什么顺序。

  5. Memory:提供存储过去交互信息的能力

  6. Callbacks:回调系统,允许您连接到 LLM 申请的各个阶段。这对于日志记录、监控、流传输和其他任务非常有用

组件:Chains

链( Chains )是一个非常通用的概念,它指的是将一系列模块化组件(或其他链)以特定方式组合起来,以实现共同的用例。

“链”是指调用序列(无论是LLM、工具还是数据预处理步骤)。主要支持的方法是使用 LCEL

LangChain表达式(LCEL)

LCEL的特点:

  1. 简洁:通过| 符号将不同的组件链接在一起,将一个组件的输出作为下一个组件的输入

    chain = prompt | model | output_parser

  2. 流式支持

  3. 异步支持

  4. 重试和回退

  5. 访问中间结果

基本示例:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

# 创建提示语
prompt = ChatPromptTemplate.from_template("给我讲一个关于{topic}的笑话")
# 创建模型
model = ChatOpenAI(model="gpt-4")
# 创建输出解析器
output_parser = StrOutputParser()

# 定义流程(链)
chain = prompt | model | output_parser

# 执行链
chain.invoke({"topic": "小狗"})

流式示例:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

# 创建提示语
prompt = ChatPromptTemplate.from_template("给我讲一个关于{topic}的笑话")
# 创建模型
model = ChatOpenAI(model="gpt-4")

# 定义流程(链)
chain = prompt | model 

# 执行链
for s in chain.stream({"topic": "比特币"}):
    print(s.content, end="|", flush=True)组件:Agents

组件:Model I/O

model_io 图示

针对模型的输入/输出,LangChain 提供了与任何语言模型进行接口交互的基本组件。

  • 提示 prompts : 将模型输入模板化、动态选择和管理

  • 语言模型 models : 通过标准接口调用语言模型

  • 输出解析器 output_parsers : 从模型输出中提取信息

提示 prompts

一个简单的提示模版创建过程:

from langchain import PromptTemplate

# 创建一个提示模版
template = """/
你是一个数据开发的专家,负责为我解答相关的问题,言简意赅即可,我的问题是: {question}?
"""

prompt = PromptTemplate.from_template(template)

prompt.format(question="周期事实表与事务事实表有什么区别")
语言模型 models

LangChain提供了两种类型模型的接口和集成:

  • LLMs: 输入一个文本字符串并返回一个文本字符串的模型

  • 聊天模型: 由语言模型支持的模型,接受一个聊天消息列表作为输入并返回一个聊天消息**(封装)**

LLMs和聊天模型在细微但重要的方面有所不同。LangChain中的LLMs是指纯文本完成模型调用。它们包装的API接受一个字符串提示作为输入,并输出一个字符串完成。 聊天模型不是接受单个字符串作为输入,而是接受一个聊天消息列表作为输入。通常,这些消息带有发言者标签(通常是“系统”,“AI”和“人类”之一)。它们返回一个AI聊天消息作为输出。

LangChain的聊天模型,目前支持的消息类型有“AIMessage”,

<think>嗯,用户想要找关于LangChain入门指南PDF文件,特别是下载链接。我需要先看看提供的引用内容里有没有相关信息。引用[1]、[3]提到有一本《LangChain入门指南》的书,并且提供了下载链接,还提到可以通过扫描二维码免费获取。引用[2]和[4]虽然也讲到了LangChain的一些功能,比如文档加载器和入门步骤,但没有直接提到PDF下载。 用户的问题可能有两个方面:一是确认是否有这样的PDF存在,二是如何获取它。根据引用内容,确实有这本书,而且引用[1]和[3]都提供了相同的下载方式,即通过CSDN的链接或扫描二维码。需要提醒用户注意链接的安全性,避免扫描不明来源的二维码。另外,引用[2]提到LangChain支持PDF加载器,这可能对用户在使用LangChain处理PDF文件时有帮助,可以一并提及。 另外,用户可能对LangChain的基础教程感兴趣,引用[4]中的入门步骤虽然更多是关于平台使用的,但也可以作为补充信息。需要确保回答结构清晰,分点说明下载方法和相关资源,同时附上注意事项,确保用户安全获取资源。最后,生成的相关问题需要围绕LangChain的学习和应用,比如文档处理、教程内容等。</think>关于《LangChain入门指南》PDF文件的获取方式及相关信息整理如下: ### 一、PDF资源获取途径 1. **官方推荐下载渠道** 根据引用内容,该书提供了两种获取方式: - **CSDN专属链接**:通过文中标注的"完整版本链接获取"或"CSDN大礼包🎁"入口下载[^1][^3] - **二维码扫描**:使用微信/V扫描指定二维码免费领取(需注意链接安全性) 2. **技术文档加载方法** 若已拥有PDF文件,可通过LangChain的`PyPDFLoader`进行加载处理: ```python from langchain.document_loaders import PyPDFLoader loader = PyPDFLoader("example.pdf") documents = loader.load() # 将PDF内容加载为可处理格式[^2] ``` ### 二、教程核心内容概览 该指南共11章,涵盖以下重点: ``` 1. LangChain框架架构解析 2. 模型I/O接口设计与实践 3. 数据增强与记忆模块实现 4. Agent系统开发与回调机制 5. LLM应用集成方案[^1] ``` ### 三、安全下载建议 1. 优先通过CSDN官方认证渠道获取 2. 扫描二维码前验证发布者身份 3. 避免点击非HTTPS加密链接
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值