Weighted Heterogeneous Graph-Based Three-View Contrastive Learning for Knowledge Tracing in Personalized e-Learning Systems
B. 图对比学习
构建加权异构图:因为有不同类型的节点和交互KT领域,一个加权异构图是根据我们的训练数据,包括三个实体类型:学生(u)、问题(q),技能(skill)和两个加权边:u-q 和q-k
结合KT场景,我们将学生答案的正确性作为边缘q−u上的权重(w1),其中w1∈{0,1},并在随后的计算中将这两个权重值视为不同的关系。在q−k上的权重w2∈(0,1)是在训练数据中计算的问题的难度。
2)节点特征变换:考虑到加权异构图上的不同节点类型具有不同的特征空间,我们首先需要使用非线性变换将它们映射到一个共同的潜在空间上。特别地,根据权重w1的值,我们将学生节点(u)分为两种类型(u1和u2),分别表示正确和错误回答问题的学生。node i ,节点类型为Ti
pi为特征变换后的节点
3)通过不同元路径q-q,最终构建出了q表示【MP】
元路径视图编码器:本模块的目标是从元路径(MP)视图中学习具有高阶语义的问题嵌入。特别地,为了获取问题之间的潜在关系,我们首先定义了两个加权元路径q→u→q和q→uk→q。
u1和u2的含义:在u-q图中,根据w权值,将学生节点(u)划分为两种类型(u1和u2),分别代表正确和错误回答问题的学生。
提出有偏随机游走,
对非问题节点进行掩码,并使用特定的基于元路径的GCN [47]在第i个元路径上聚合问题的邻居信息。
由于不同的元路径在同一个问题上表示不同的语义,因此我们使用一种注意机制来融合不同元路径上的各种问题表示。具体来说,我们首先计算来自不同元路径的贡献,并通过一个softmax层将它们转换为权重:
V问题集
此外,由于eMP考虑了问题之间的显式和直接关系,最终将其应用于KT模块作为问题表示。
4)然后利用三种类型邻居关系q-u1,qu2,q-k,获得不同类型节点的最终聚合后的表示。【NS】
网络模式视图编码器:这里我们的目标是学习考虑到网络模式(NS)的问题嵌入,如图3所示。对于常见的问题节点i,不同类型的邻居(q和u)对它的贡献不同,而同一邻居类型中的不同节点的贡献也不同。因此,我们首先应用图注意机制(GAT)来从给定类型的邻居中的不同节点收集消息:
其中βi Tm ,j是类型Tm的邻居节点j对问题节点i的注意值,hT i m表示问题i类型Tm的邻域嵌入,Ni Tm是我们随机抽样的邻居数。然后使用另一个GAT来收集每种类型的贡献。这里,q−k,q−u1,q−u2是三种不同的邻居关系:
其中m∈{1,2,3}是类型索引,αTm是类型Tm的重要性,WNS和bNS是可学习的参数。最后,通过聚合各种邻居类型,形成了NS视图的嵌入问题:
5)知识跟踪视图编码器:【kt】
6)loss
三视图框架的对比损失,我们应用一个投影层将不同视图的问题表示映射到相同的潜在空间,对于每个视图: