给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
实例1
输入: [3,3,5,0,0,3,1,4] 输出: 6 解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
实例2
输入: [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 =5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
不同于买卖股票的最佳时机的前两道题,这道题明显是dp问题,因为本题限制了交易次数,所以就有了Leetcode上面的得magic解法,但是如果不限制交易次数,那么这道题就要用经典DP来解,下面先来介绍这个magic解法。
int maxProfit1(vector<int>& prices) {
if(prices.size()==1||prices.size()==0)return 0;
int buy1 = -prices[0], buy2 = -prices[0];
int sell1 = 0, sell2 = 0;
for(int i=0;i<prices.size();i++){
buy1=max(buy1,-prices[i]);
sell1=max(buy1+prices[i],sell1);
buy2=max(buy2,sell1-prices[i]);
sell2=max(buy2+prices[i],sell2);
}
return sell2;
}
其中,buy1代表第一次买入,sell表示第一次卖出,buy2代表第二次买入,sell2代表第二次卖出。直观理解是buy是要花钱的,即减去当日的交易价格,sell就是卖出即加上当日的交易价格那么就有:
buy1=max(buy1,-prices[i])
,
sell1=max(buy1+prices[i],sell1)
buy2=max(buy2,sell1-prices[i])
sell2=max(sell2,prices[i]+buy2)
接下来介绍常规的DP解法,假设我们可以进行K次交易。dp[k][i]代表前i个日子进行K次交易最大的收益值。
dp[k][j]=max(dp[k][j-1],dp[k-1][j-1]+prices[i]-prices[j])(j is range(0,i))
dp[k][j]=max(dp[k][j-1],prices[i]+max(dp[k-1][j-1]-prices[j])
代码如下:
int maxProfit(vector<int>& prices) {
if(prices.size()<=1)return 0;
int K=3;
vector<vector<int>>dp(K,vector<int>(prices.size(),0));
for( int k=1;k<K;k++){
// int max_pf=-prices[0];
for(int i=1;i<prices.size();i++){
//int max_pf=prices[i]-prices[0]+dp[k-1][j];//dp[k-1][j]=0;
int max_pf=-prices[0];
for(int j=1;j<=i;j++){
max_pf=max(max_pf,dp[k-1][j-1]-prices[j]);
}
dp[k][i]=max(max_pf+prices[i],dp[k][i-1]);
}
}
return dp[2][prices.size()-1];
}
上面这种方法可以只能通过199/200个case最后一个case是超时错误,那么接下来就需要优化时间复杂度,我们可以看出,在最内层的for循环中,我们存在重复计算max_pf,因为我们每一次都要重新计算从从0-i的max_pf,我们可以优化成在每一次的迭代的时候我们更新当前的max_pf,收益变大,就更新,变小则维持不变。
就有下面的代码:
int maxProfit2(vector<int>& prices) {
if(prices.size()<=1)return 0;
int K=3;
vector<vector<int>>dp(K,vector<int>(prices.size(),0));
for( int k=1;k<K;k++){
int max_pf=-prices[0];
for(int i=1;i<prices.size();i++){
//在这里我们没一次迭代都更新我们的max_pf,这样的时间复杂度就是O(Kn)
max_pf=max(max_pf,dp[k-1][i-1]-prices[i]);
dp[k][i]=max(max_pf+prices[i],dp[k][i-1]);
}
}
return dp[2][prices.size()-1];
}