生活在树上 牛客手速月赛46 D

该博客介绍了一个关于树形结构的问题,其中每个节点的移动距离限制为2。主要内容涉及如何计算节点在一天内可以到达的不同节点数量,重点在于分析节点的父节点、子节点、子节点的子节点等关系,并在输入时预处理每个点距离为1的儿子数量。解决方案采用深度优先搜索策略,遍历节点并计算可达节点数,时间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目
题意:
ZHR 住在一有根棵树上(1号节点为根),树上的每条边都有一个距离。由于他特别懒,所以他一天移动的距离不能超过 2,对于每个节点,问他在一天中可以通过这个节点到达多少个不同的节点。
思路: 只有父节点、子节点、子节点的子节点、父节点的父节点、父节点的子节点有可能满足条件,每个点向儿子处找找,再判断一下父节点、父节点的父节点等。可以在输入时预处理每个点距离为1的儿子的数量。
时间复杂度: O(n)
代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<complex>
#include<cstring>
#include<cmath>
#include<vector>
#include<map>
#include<unordered_map>
#include<list>
#include<set>
#include<queue>
#include<stack>
#define OldTomato ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)
#define fir(i,a,b) for(int i=a;i<=b;++i) 
#define mem(a,x) memset(a,x,sizeof(a))
#define p_ priority_queue
// round() 四舍五入 ceil() 向上取整 floor() 向下取整
// lower_bound(a.begin(),a.end(),tmp,greater<ll>()) 第一个小于等于的
// #define int long long //QAQ
using namespace std;
typedef complex<double> CP;
typedef pair<int,int> PII;
typedef long long ll;
// typedef __int128 it;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const ll inf = 1e18;
const int N = 1e6+10;
const int M = 2e6+10;
const int mod = 1e9+7;
const double eps = 1e-6;
inline int lowbit(int x){ return x&(-x);}
template<typename T>void write(T x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
    {
        write(x/10);
    }
    putchar(x%10+'0');
}
template<typename T> void read(T &x)
{
    x = 0;char ch = getchar();ll f = 1;
    while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
    while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
int n,m,k,T;
int h[N],e[M],ne[M],w[M],idx = 0;
int fa[N]; //点i的父节点
int f[N]; //点i的父节点到i的距离
int son[N]; //点i有多少个距离为1的儿子
void add(int a,int b,int c)
{
	e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
}
void solve()
{
   mem(h,-1);
   read(n);
   for(int i=2;i<=n;++i)
   {
   	  int x,y; read(x),read(y);
   	  add(x,i,y);
   	  f[i] = y;
   	  fa[i] = x;
   	  if(y==1) son[x]++;
   }
   // fir(i,1,n) cout<<i<<":"<<son[i]<<endl;
   for(int i=1;i<=n;++i)
   {
   	  int ans = 1;
   	  for(int j=h[i];~j;j=ne[j])
   	  {
   	  	 int wh = e[j];
   	  	 int t = w[j];
   	  	 if(t==2) ans++;
   	  	 else if(t==1) ans += son[wh]+1;
   	  }
   	  if(f[i]==2) ans++;
   	  else if(f[i]==1) 
   	  {
   	  	ans += son[fa[i]];
   	  	if(f[fa[i]]==1) ans++;
   	  }
   	  cout<<ans<<"\n";
   }
}
signed main(void)
{  
   T = 1;
   // OldTomato; cin>>T;
   // read(T);
   while(T--)
   {
   	 solve();
   }
   return 0;
}

### 关于小白109的信息 目前并未找到关于小白109的具体比信息或解内容[^5]。然而,可以推测该事可能属于网举办的系列算法竞之一,通常这类比会涉及数据结构、动态规划、图论等经典算法问。 如果要准备类似的事,可以通过分析其他场次的比目来提升自己的能力。例如,在小白13中,有一道与二叉树相关的目,其核心在于处理树的操作以及统计最终的结果[^3]。通过研究此类问的解决方法,能够帮助理解如何高效地设计算法并优化时间复杂度。 以下是基于已有经验的一个通用解决方案框架用于应对类似场景下的批量更新操作: ```python class TreeNode: def __init__(self, id): self.id = id self.weight = 0 self.children = [] def build_tree(n): nodes = [TreeNode(i) for i in range(1, n + 1)] for node in nodes: if 2 * node.id <= n: node.children.append(nodes[2 * node.id - 1]) if 2 * node.id + 1 <= n: node.children.append(nodes[2 * node.id]) return nodes[0] def apply_operations(root, operations, m): from collections import defaultdict counts = defaultdict(int) def update_subtree(node, delta): stack = [node] while stack: current = stack.pop() current.weight += delta counts[current.weight] += 1 for child in current.children: stack.append(child) def exclude_subtree(node, total_nodes, delta): nonlocal root stack = [(root, False)] # (current_node, visited) subtree_size = set() while stack: current, visited = stack.pop() if not visited and current != node: stack.append((current, True)) for child in current.children: stack.append((child, False)) elif visited or current == node: if current != node: subtree_size.add(current.id) all_ids = {i for i in range(1, total_nodes + 1)} outside_ids = all_ids.difference(subtree_size.union({node.id})) for idx in outside_ids: nodes[idx].weight += delta counts[nodes[idx].weight] += 1 global nodes nodes = {} queue = [root] while queue: curr = queue.pop(0) nodes[curr.id] = curr for c in curr.children: queue.append(c) for operation in operations: op_type, x = operation.split(' ') x = int(x) target_node = nodes.get(x, None) if not target_node: continue if op_type == '1': update_subtree(target_node, 1) elif op_type == '2' and target_node is not None: exclude_subtree(target_node, n, 1) elif op_type == '3': path_to_root = [] temp = target_node while temp: path_to_root.append(temp) if temp.id % 2 == 0: parent_id = temp.id // 2 else: parent_id = (temp.id - 1) // 2 if parent_id >= 1: temp = nodes[parent_id] else: break for p in path_to_root: p.weight += 1 counts[p.weight] += 1 elif op_type == '4': pass # Implement similarly to other cases. result = [counts[i] for i in range(m + 1)] return result ``` 上述代码片段展示了针对特定类型的树形结构及其操作的一种实现方式。尽管它并非直接对应小白109中的具体目,但它提供了一个可借鉴的设计思路。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值