牛客手速月赛63 E(推式子)

这篇博客探讨了一道编程题,涉及计算长度为n的所有排列中最大值为n且最小值为1的子区间个数。通过观察1和n之间的距离,作者推导出求和公式,并利用立方和、平方和公式简化计算。代码实现包括快速幂运算和动态规划,最终得出O(1)复杂度的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目
题意:
计算长度为 n 的所有排列中所有最大值为 n 且最小值为 1 的子区间个数,对 998244353 取模。
思路: 看1和n之间的距离是1、2、3,然后找规律。当距离是k时,稳定有(n-k)的贡献,之后看起点1的位置,左边有i-1个数,右边有n-(i+k)个数,可以两两组合,直接相乘。所以就能推出求和公式了。
PS: 这里只考虑了1和n的关系,还可以倒过来,乘2,然后其他数是可以任意排列的,还有(n-2)!的贡献.
在这里插入图片描述
还可以进一步化简
在这里插入图片描述
题解说能化简成O(1),上述式子可以再拆开,然后套立方和、平方和公式啥的。
在这里插入图片描述
套公式即可。
代码:

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
const int N = 1e6+10;
const int mod = 998244353;
ll n;
int m,k,T;
ll fac[N];
ll qpow(ll a,int k)
{
	ll res = 1;
	while(k)
	{
		if(k&1) res = res * a % mod;
		a = a * a % mod;
		k >>= 1;
	}
	return res;
}
ll ni(ll x)
{
	return qpow(x,mod-2);
}
void solve()
{
	cin>>n;
	if(n==1)
	{
		cout<<1; return ;
	}
	ll ans = 0;
	ll fenmu1 = ni(2);
	ll fenmu2 = ni(6);
	for(ll k=1;k<=n-1;++k)
	{
		ll t = (n-k)*(n-k+1)%mod*(n-k+2)%mod*fenmu2%mod;
		ans = (ans + t) % mod;
//		ll t1 = 1ll*(n-k+1)*(n-k)%mod*(n-k+1)%mod*fenmu1%mod;
//		ll t2 = 1ll*(n-k)*(n-k+1)%mod*(2*n-2*k+1)%mod*fenmu2%mod;
//		ans = (ans + t1) % mod;
//		ans = (ans - t2) % mod;
	}
	ans %= mod; ans = (ans + mod) % mod;
	ans = ans * fac[n-2] % mod;
	ans = ans * 2 % mod;
	cout<<ans;
}
signed main(void)
{
	fac[0] = 1;
	for(int i=1;i<N;++i) fac[i] = fac[i-1] * i % mod;
	T = 1;
//	cin>>T;
	while(T--)
	solve();
	return 0;
}
/*
3
2 2 2
2 2 1
*/
### 关于小白109的信息 目前并未找到关于小白109的具体比信息或题解内容[^5]。然而,可以测该事可能属于网举办的系列算法竞之一,通常这类比会涉及数据结构、动态规划、图论等经典算法问题。 如果要准备类似的事,可以通过分析其他场次的比题目来提升自己的能力。例如,在小白13中,有一道与二叉树相关的题目,其核心在于处理树的操作以及统计最终的结果[^3]。通过研究此类问题的解决方法,能够帮助理解如何高效地设计算法并优化时间复杂度。 以下是基于已有经验的一个通用解决方案框架用于应对类似场景下的批量更新操作: ```python class TreeNode: def __init__(self, id): self.id = id self.weight = 0 self.children = [] def build_tree(n): nodes = [TreeNode(i) for i in range(1, n + 1)] for node in nodes: if 2 * node.id <= n: node.children.append(nodes[2 * node.id - 1]) if 2 * node.id + 1 <= n: node.children.append(nodes[2 * node.id]) return nodes[0] def apply_operations(root, operations, m): from collections import defaultdict counts = defaultdict(int) def update_subtree(node, delta): stack = [node] while stack: current = stack.pop() current.weight += delta counts[current.weight] += 1 for child in current.children: stack.append(child) def exclude_subtree(node, total_nodes, delta): nonlocal root stack = [(root, False)] # (current_node, visited) subtree_size = set() while stack: current, visited = stack.pop() if not visited and current != node: stack.append((current, True)) for child in current.children: stack.append((child, False)) elif visited or current == node: if current != node: subtree_size.add(current.id) all_ids = {i for i in range(1, total_nodes + 1)} outside_ids = all_ids.difference(subtree_size.union({node.id})) for idx in outside_ids: nodes[idx].weight += delta counts[nodes[idx].weight] += 1 global nodes nodes = {} queue = [root] while queue: curr = queue.pop(0) nodes[curr.id] = curr for c in curr.children: queue.append(c) for operation in operations: op_type, x = operation.split(' ') x = int(x) target_node = nodes.get(x, None) if not target_node: continue if op_type == '1': update_subtree(target_node, 1) elif op_type == '2' and target_node is not None: exclude_subtree(target_node, n, 1) elif op_type == '3': path_to_root = [] temp = target_node while temp: path_to_root.append(temp) if temp.id % 2 == 0: parent_id = temp.id // 2 else: parent_id = (temp.id - 1) // 2 if parent_id >= 1: temp = nodes[parent_id] else: break for p in path_to_root: p.weight += 1 counts[p.weight] += 1 elif op_type == '4': pass # Implement similarly to other cases. result = [counts[i] for i in range(m + 1)] return result ``` 上述代码片段展示了针对特定类型的树形结构及其操作的一种实现方式。尽管它并非直接对应小白109中的具体题目,但它提供了一个可借鉴的设计思路。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值