低版本MMSegmentation一次安装运行成功

MMSegmentation安装教程

机器环境 cuda11.7(cuda可以向下兼容,高版本cuda不影响安装)

1.创建环境

conda create -n mmseg python=3.8 -y

2.进入环境

conda activate mmseg

3.安装低版本的 pytorch==1.13, cuda11.7

pip install torch==1.13.0 torchvision --index-url https://download.pytorch.org/whl/cu117

4.安装mmcv==2.0.0rc4 安装 MMCV

pip install mmcv==2.0.0rc4 -f https://download.openmmlab.com/mmcv/dist/cu117/torch1.13/index.html

5.下载mmsegmentation文件

文件下载

点击进入,下载zip包,解压就可以

6.配置环境

解压之后,在终端环境进入文件夹,并启动相应的环境

安装必要的库

pip install -v -e . # 句尾有个点别忽略了

7. 安装mmengin

pip install mmengin==0.7.0

注意:在安装的过程中,如果出现 “No modules named xxx”,缺少相应的库

直接采用 : pip install xxx 

安装缺少的库就可以了

8. 验证测试

安装 mim 工具,下载相应的测试文件

pip install -U openmim

安装完成后下载 测试文件

mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

下载完成后是这样的

在安装过程中,会出现一个错误,需要把 yapf 库的版本降低到 0.40.1版本

具体为: pip uninstall yapf           # 先卸载

               pip install yapf==0.40.1 # 再安装

打开项目中的demo文件夹,找到 image_demo.py文件,配置以下四个主要参数

# 测试图片
parser.add_argument('--img', default='demo/demo.png', help='Image file')
# 测试模型配置文件  
parser.add_argument('--config', default='pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py', help='Config file')  
# 测试模型权重文件
parser.add_argument('--checkpoint', default='pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth', help='Checkpoint file')  
# 保存文件夹,保存文件为demo.png
parser.add_argument('--out-file', default='wordir/demo.png', help='Path to output file')

运行 image_demo.py

python demo/image_demo.py

结果在wordir文件夹,结果如下

安装测试成功!

可以打印mmsegmentation的版本

import mmseg
print(mmseg.__version__)

以上就是低版本MMSegmentation安装教程~

<think>我们正在处理用户关于使用AutoDL搭建遥感大模型训练环境的问题。用户的需求包括租借GPU、环境配置、数据集加载、模型测试和性能优化。根据提供的引用,我们可以整合以下步骤:1.**租借GPU实例**:参考引用[1]创建AutoDL实例,选择适合的GPU型号(如RTX3090或A100),注意学生认证可享受优惠。 2. **环境配置**:引用[1]和[2]都提到了环境配置步骤,包括安装PyTorch、CUDA等。引用[1]详细说明了如何配置PyCharm远程连接,引用[2]则提到了nnU-Net环境的安装。 3. **数据集加载**:引用[1]提到两种上传数据的方式:通过网盘上传(单个压缩文件)或使用Xftp(多个文件)。引用[2]提到配置自定义数据集。 4. **模型测试与优化**:引用[3]虽然讲的是Stable Diffusion,但其中关于模型部署和测试的思路可以借鉴。对于遥感大模型,我们需要加载模型、进行训练和推理,并优化性能。 由于用户特别提到“遥感大模型”,我们假设用户可能使用类似U-Net、Transformer等结构的模型进行遥感图像处理。以下步骤将围绕这些展开。 ###详细步骤:####1.租借GPU实例-访问AutoDL官网(https://www.autodl.com/),注册并完成学生认证(可享优惠)[^1]。 -在控制台点击“租用新实例”,选择适合的配置:-地域:根据延迟选择(如北京A区)。-显卡:推荐RTX3090(24GB显存)或A100(40GB显存)以满足大模型需求。-镜像:选择PyTorch版本(如1.11.0,Python3.8,CUDA11.3)[^1]。-点击“立即创建”,系统会自动初始化实例。 ####2.环境配置- **连接实例**:创建成功后,在控制台点击“JupyterLab”或使用SSH连接(推荐PyCharm远程连接,引用[1]有详细步骤)。 -**安装依赖**:-通过终端安装必要的包:```bashpip installtorch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113#其他依赖,如遥感处理库pip installrasterioopencv-python scikit-image```-如果使用特定框架(如nnU-Net,参考引用[2]),需按照其文档安装:```bashgitclone https://github.com/MIC-DKFZ/nnUNet.gitcdnnUNetpipinstall -e .```- **设置环境变量**:根据模型需求设置(如nnU-Net需要设置数据集路径)。####3.数据集加载- **上传数据**:-小数据集:通过AutoDL网盘上传(控制台→网盘→上传),然后在实例中解压:```bashunzipdataset.zip -d /root/autodl-tmp/```-大数据集:使用Xftp或rsync(引用[1]提到)上传。- **数据集预处理**:遥感数据通常需要预处理(如裁剪、归一化)。例如,使用GDAL或rasterio读取遥感图像,并转换为模型可接受的格式。####4.模型训练与测试- **获取模型代码**:从GitHub克隆遥感大模型(如RemoteSensing Transformer(RST)或 U-Net变体)。 -**训练**:```bashpythontrain.py--data_path/root/autodl-tmp/dataset--epochs100 --batch_size16``` -**测试**:训练完成后运行测试脚本,评估指标(如IoU、准确率):```bashpythontest.py--model_path model_weights.pth --test_data/root/autodl-tmp/test```####5.性能优化- **混合精度训练**:使用AMP(自动混合精度)减少显存占用:```pythonfromtorch.cuda.amp importautocast, GradScalerscaler= GradScaler()with autocast():outputs= model(inputs)loss =criterion(outputs,labels)scaler.scale(loss).backward()scaler.step(optimizer)scaler.update()``` -**数据加载优化**:使用多进程数据加载(`DataLoader`的`num_workers`参数)。- **模型剪枝/量化**:对于部署,可采用剪枝或量化减小模型大小。 ###注意事项-**费用控制**:AutoDL按小时计费,不用时需关机或释放实例[^1]。- **数据持久化**:将数据保存在`/root/autodl-tmp`(该目录关机后保留,但释放实例会清除),重要数据及时备份到网盘。 ###相关问题§§相关问题§§1.如何选择适合遥感图像分割的模型架构?2.在AutoDL上如何监控GPU使用情况以优化训练效率?3.遥感大模型训练中常见的数据预处理方法有哪些?4.如何将训练好的遥感模型部署到实际应用中?</think>以下是使用AutoDL搭建遥感大模型训练环境的完整指南,涵盖GPU租借、环境配置、数据集处理到模型优化的全流程: --- ### 一、AutoDL GPU租借与初始化 1. **注册与认证** - 访问[AutoDL官网](https://www.autodl.com/)完成学生认证(可享1.88元/小时优惠)[^1] - 领取10元代金券 2. **创建GPU实例** ```markdown 控制台 → 租用新实例 → 选择配置: - GPU型号:推荐RTX 4090/A100(显存≥24GB) - 镜像:PyTorch 2.0+ / CUDA 11.8 - 硬盘:100GB+(遥感数据集较大) - 点击"立即创建" ``` ![实例创建界面](https://example.com/autodl-rent.png) [^1] 3. **连接实例** - **SSH连接**:使用控制台提供的`ssh [email protected] -p 端口号` - **PyCharm远程连接**(推荐): ```markdown 1. 下载PyCharm专业版 2. Tools → Deployment → 配置SFTP连接(主机=实例公网IP,端口=AutoDL提供) 3. 映射本地与云端路径 ```[^1] --- ### 二、环境配置与依赖安装 1. **基础环境** ```bash # 更新系统 apt update && apt upgrade -y # 安装遥感处理核心工具 pip install gdal==3.6.0 rasterio torchgeo pip install torch==2.1.0 torchvision --extra-index-url https://download.pytorch.org/whl/cu118 ``` 2. **安装大模型框架**(以MMSegmentation为例) ```bash git clone https://github.com/open-mmlab/mmsegmentation.git cd mmsegmentation pip install -v -e . # 可编辑模式安装 ``` 3. **验证环境** ```python import torch print(torch.cuda.is_available()) # 应返回True print(torch.cuda.get_device_name(0)) # 显示GPU型号 ``` --- ### 三、数据集加载与处理 1. **数据上传** - **小数据集**:通过AutoDL网盘直接上传ZIP包 → 实例中解压 ```bash unzip /root/autodl-nas/rs_data.zip -d /root/autodl-tmp/ ``` - **大数据集**:使用Xftp/SFTP传输(推荐FileZilla)[^1] 2. **数据集预处理** ```python from torchgeo.datasets import LoveDA # 转换遥感数据为模型输入格式 dataset = LoveDA( root="/root/autodl-tmp/data", split="train", transforms=ResizeTransform(512,512) # 调整尺寸 ) ``` 3. **创建DataLoader** ```python from torch.utils.data import DataLoader train_loader = DataLoader(dataset, batch_size=16, shuffle=True, num_workers=4) ``` --- ### 四、模型训练与测试 1. **初始化遥感大模型**(以UPerNet为例) ```python from mmseg.models import UPerNet model = UPerNet( backbone=dict(type='ResNet50'), decode_head=dict(num_classes=10) # 根据遥感类别数调整 ).cuda() ``` 2. **启动训练** ```bash python tools/train.py configs/upernet/upernet_r50_512x512_80k_loveda.py \ --work-dir /root/output \ --gpu-ids 0 # 指定GPU ``` 3. **性能测试** ```bash python tools/test.py configs/upernet/upernet_r50_512x512_80k_loveda.py \ /root/output/latest.pth \ --eval mIoU # 评估分割精度 ``` --- ### 五、性能优化技巧 1. **混合精度训练**(提速30%) ```python from torch.cuda.amp import autocast, GradScaler scaler = GradScaler() with autocast(): output = model(input) loss = criterion(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` 2. **数据加载优化** ```python # 启用pin_memory和异步传输 DataLoader(..., pin_memory=True, prefetch_factor=2) ``` 3. **梯度累积**(解决显存不足) ```python for i, data in enumerate(train_loader): loss = forward(data) loss.backward() if (i+1) % 4 == 0: # 每4步更新一次权重 optimizer.step() optimizer.zero_grad() ``` --- ### 六、成本控制建议 1. **监控资源** ```bash watch -n 1 nvidia-smi # 实时查看GPU利用率 ``` 2. **自动关机设置** ```bash # 训练完成后自动关机(防止费用浪费) nohup python train.py && shutdown ``` 3. **数据持久化** - 重要数据保存到`/root/autodl-nas`(网盘目录) - 定期备份模型到本地 > **提示**:完整示例代码库 [GitHub - RS-Training-on-AutoDL](https://github.com/examples/rs-autodl) --- ### 相关问题
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值